Analytic Solutions and Singularity Formation for the Peakon b-Family Equations

被引:16
作者
Coclite, G. M. [2 ]
Gargano, F. [1 ]
Sciacca, V. [1 ]
机构
[1] Dipartimento Matemat & Informat, I-90123 Palermo, Italy
[2] Dept Matemat, I-70125 Bari, Italy
关键词
Spectral analysis; Complex singularities; b-family equation; Analytic solution; Abstract Cauchy-Kowalewski theorem; CAMASSA-HOLM; PRANDTLS EQUATIONS; EULER EQUATION; WELL-POSEDNESS; EXISTENCE; SOLITONS; WAVES; SPACE;
D O I
10.1007/s10440-012-9753-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the well-posedness of the b-family equation in analytic function spaces. Using the Abstract Cauchy-Kowalewski theorem we prove that the b-family equation admits, locally in time, a unique analytic solution. Moreover, if the initial data is real analytic and it belongs to H (s) with s > 3/2, and the momentum density u(0) - u (0,xx) does not change sign, we prove that the solution stays analytic globally in time, for b >= 1. Using pseudospectral numerical methods, we study, also, the singularity formation for the b-family equations with the singularity tracking method. This method allows us to follow the process of the singularity formation in the complex plane as the singularity approaches the real axis, estimating the rate of decay of the Fourier spectrum.
引用
收藏
页码:419 / 434
页数:16
相关论文
共 25 条
[1]  
[Anonymous], FUNCTION COMPLEX VAR
[2]  
Bailey D. H., 2002, ARPREC
[3]   Spatial analyticity properties of nonlinear waves [J].
Bona, JL ;
Grujic, Z .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (03) :345-360
[4]   SINGULARITY FORMATION FOR COMPLEX SOLUTIONS OF THE 3D INCOMPRESSIBLE EULER EQUATIONS [J].
CAFLISCH, RE .
PHYSICA D-NONLINEAR PHENOMENA, 1993, 67 (1-3) :1-18
[5]   AN INTEGRABLE SHALLOW-WATER EQUATION WITH PEAKED SOLITONS [J].
CAMASSA, R ;
HOLM, DD .
PHYSICAL REVIEW LETTERS, 1993, 71 (11) :1661-1664
[6]   Global weak solutions to a generalized hyperelastic-rod wave equation [J].
Coclite, GM ;
Holden, H ;
Karlsen, KH .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2005, 37 (04) :1044-1069
[7]   On the well-posedness of the Degasperis-Procesi equation [J].
Coclite, GM ;
Karlsen, KH .
JOURNAL OF FUNCTIONAL ANALYSIS, 2006, 233 (01) :60-91
[8]  
Degasperis A., 1999, Symmetry and perturbation theory, P23
[9]   Singularity tracking for Camassa-Holm and Prandtl's equations [J].
Della Rocca, Giulio ;
Lombardo, Maria Carmela ;
Sammartino, Marco ;
Sciacca, Vincenzo .
APPLIED NUMERICAL MATHEMATICS, 2006, 56 (08) :1108-1122
[10]   Singularities of Euler flow? Not out of the blue! [J].
Frisch, U ;
Matsumoto, T ;
Bec, J .
JOURNAL OF STATISTICAL PHYSICS, 2003, 113 (5-6) :761-781