Understanding the Electronic Structures of Graphene Quantum Dot Physisorption and Chemisorption onto the TiO2 (110) Surface: A First-Principles Calculation

被引:37
作者
Long, Run [1 ,2 ]
机构
[1] Univ Coll Dublin, Complex & Adapt Syst Lab, Dublin, Ireland
[2] Univ Coll Dublin, Sch Phys, Dublin, Ireland
基金
爱尔兰科学基金会;
关键词
computational chemistry; graphene; quantum dots; surface analysis; titanium dioxide; PHOTOCATALYTIC ACTIVITY; CHARGE-TRANSFER; DOPED TIO2; TITANIUM-DIOXIDE; WATER; OXIDE; NANOCOMPOSITES; INTERFACE; TUNGSTEN;
D O I
10.1002/cphc.201200882
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We investigated the interfacial electronic structure and charge transfer properties of graphene quantum dot (GQD) physisorption and chemisorption on the TiO2 (110) surface from density functional theory calculations. The simulations show that a slight charge transfer occurs in physisorption case while a significant charge transfer takes place in chemisorption configuration. We present a detailed comparison of the similarities and differences between the electronic structures. The similarities originate from the positive work function difference in both the physisorption and chemisorption configurations, which is able to drive electron transfer from GQD into TiO2, leading to charge separation across the GQDTiO2 interface. The differences stem from the interaction between the GQD and TiO2 substrate. For example, GQD bounds to TiO2 surface through van der Waals interactions in the case of physisorption. In the chemisorption configuration, however, there exists strong covalent bonding between them. This leads to much more efficient charge separation for chemisorption than for physisorption. Furthermore, the GQDTiO2 composites show large band-gap narrowing that could extend the optical absorption edge into the visible-light region. This should imply that chemisorbed GQDs produce a composite with better photocatalytic and photovoltaic performance than composites formed through physisorption.
引用
收藏
页码:579 / 582
页数:4
相关论文
共 47 条
[1]   Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation [J].
Akhavan, O. ;
Azimirad, R. .
APPLIED CATALYSIS A-GENERAL, 2009, 369 (1-2) :77-82
[2]   Visible-light photocatalysis in nitrogen-doped titanium oxides [J].
Asahi, R ;
Morikawa, T ;
Ohwaki, T ;
Aoki, K ;
Taga, Y .
SCIENCE, 2001, 293 (5528) :269-271
[3]   Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase -: art. no. 026103 [J].
Batzill, M ;
Morales, EH ;
Diebold, U .
PHYSICAL REVIEW LETTERS, 2006, 96 (02)
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals [J].
Chen, Xiaobo ;
Liu, Lei ;
Yu, Peter Y. ;
Mao, Samuel S. .
SCIENCE, 2011, 331 (6018) :746-750
[6]   Theory of carbon doping of titanium dioxide [J].
Di Valentin, C ;
Pacchioni, G ;
Selloni, A .
CHEMISTRY OF MATERIALS, 2005, 17 (26) :6656-6665
[7]   Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response [J].
Du, Aijun ;
Ng, Yun Hau ;
Bell, Nicholas J. ;
Zhu, Zhonghua ;
Amal, Rose ;
Smith, Sean C. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2011, 2 (08) :894-899
[8]   Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study [J].
Dudarev, SL ;
Botton, GA ;
Savrasov, SY ;
Humphreys, CJ ;
Sutton, AP .
PHYSICAL REVIEW B, 1998, 57 (03) :1505-1509
[9]   The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials [J].
Elder, SH ;
Cot, FM ;
Su, Y ;
Heald, SM ;
Tyryshkin, AM ;
Bowman, MK ;
Gao, Y ;
Joly, AG ;
Balmer, ML ;
Kolwaite, AC ;
Magrini, KA ;
Blake, DM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2000, 122 (21) :5138-5146
[10]   TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis [J].
Friedmann, Donia ;
Mendive, Cecilia ;
Bahnemann, Detlef .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 99 (3-4) :398-406