The combination of a poly-caprolactone/nano-hydroxyapatite honeycomb scaffold and mesenchymal stem cells promotes bone regeneration in rat calvarial defects

被引:28
作者
Naudot, Marie [1 ]
Garcia Garcia, Alejandro [2 ]
Jankovsky, Nicolas [3 ]
Barre, Anais [1 ]
Zabijak, Luciane [4 ]
Azdad, Soufiane Zakaria [5 ]
Collet, Louison [3 ]
Bedoui, Fahmi [6 ]
Hebraud, Anne [7 ]
Schlatter, Guy [7 ]
Devauchelle, Bernard [1 ,8 ,9 ]
Marolleau, Jean-Pierre [3 ,10 ]
Legallais, Cecile [2 ]
Le Ricousse, Sophie [1 ]
机构
[1] Jules Verne Univ Picardie, EA7516, CHIMERE, Amiens, France
[2] Univ Technol Compiegne, CNRS, UMR 7338, BMBI, Compiegne, France
[3] Jules Verne Univ Picardie, EA4666, HEMATIM, Amiens, France
[4] Jules Verne Univ Picardie, Plateforme ICAP, Amiens, France
[5] Amiens Univ Med Ctr, Dept Pathol & Cytol, Amiens, France
[6] Univ Technol Compiegne, FRE CNRS 2012, Lab Roberval, Compiegne, France
[7] Univ Strasbourg, CNRS, ICPEES UMR 7515, Strasbourg, France
[8] Amiens Univ Med Ctr, Dept Maxillofacial Surg, Amiens, France
[9] Facing Faces Inst, Amiens, France
[10] Amiens Univ Med Ctr, Dept Hematol, Amiens, France
关键词
biomaterials; bone regeneration; calvarial defect; electrospinning; honeycomb; mesenchymal stem cell; COMPOSITE SCAFFOLDS; SIZE; POLYCAPROLACTONE; REPAIR; NANO;
D O I
10.1002/term.3114
中图分类号
Q813 [细胞工程];
学科分类号
摘要
Bone tissue engineering goes beyond the limitations of conventional methods of treating bone loss, such as autograft-induced morbidity and a lack of integration for large grafts. Novel biomimicry approaches (using three-dimensional [3D] electrospinning and printing techniques) have been designed to offer the most appropriate environment for cells and thus promote bone regeneration. In the present study, we assessed the bone regeneration properties of a composite 3D honeycomb structure from the electrostatic template-assisted deposition process by an alternate deposition of electrospun polycaprolactone (PCL) nanofibers and electrosprayed hydroxyapatite nanoparticles (nHA) on a honeycomb micropatterned substrate. We first confirmed the cytocompatibility of this honeycomb PCL-nHA scaffold in culture with bone marrow-derived mesenchymal stem cells (BM-MSCs). The scaffold was then implanted (alone or with seeded MSCs) for 2 months in a rat critical-sized calvarial defect model. The observation of new bone synthesis in situ (monitored using microcomputed tomography every 2 weeks and a histological assessment upon extraction) demonstrated that the honeycomb PCL-nHA scaffold was osteoconductive. Moreover, the combination of the scaffold with BM-MSCs was associated with significantly greater bone volume and mineralized regeneration during the 2-month experiment. The combination of the biomimetic honeycomb PCL-nHA scaffold with patient mesenchymal stem cells might therefore have great potential for clinical applications and specifically in maxillofacial surgery.
引用
收藏
页码:1570 / 1580
页数:11
相关论文
共 43 条
[1]   Extracellular matrix networks in bone remodeling [J].
Alford, Andrea I. ;
Kozloff, Kenneth M. ;
Hankenson, Kurt D. .
INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2015, 65 :20-31
[2]   The Osteogenic and Tenogenic Differentiation Potential of C3H10T1/2 (Mesenchymal Stem Cell Model) Cultured on PCL/PLA Electrospun Scaffolds in the Absence of Specific Differentiation Medium [J].
Baudequin, Timothee ;
Gaut, Ludovic ;
Mueller, Marc ;
Huepkes, Angela ;
Glasmacher, Birgit ;
Duprez, Delphine ;
Bedoui, Fahmi ;
Legallais, Cecile .
MATERIALS, 2017, 10 (12)
[3]   Structural and human cellular assessment of a novel microsphere-based tissue engineered scaffold for bone repair [J].
Borden, M ;
El-Amin, SF ;
Attawia, M ;
Laurencin, CT .
BIOMATERIALS, 2003, 24 (04) :597-609
[4]   3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds [J].
Brennan, Meadhbh A. ;
Renaud, Audrey ;
Gamblin, Anne-laure ;
D'Arros, Cyril ;
Nedellec, Steven ;
Trichet, Valerie ;
Layrolle, Pierre .
BIOMEDICAL MATERIALS, 2015, 10 (04)
[5]   Accelerated craniofacial bone regeneration through dense collagen gel scaffolds seeded with dental pulp stem cells [J].
Chamieh, Frederic ;
Collignon, Anne-Margaux ;
Coyac, Benjamin R. ;
Lesieur, Julie ;
Ribes, Sandy ;
Sadoine, Jeremy ;
Llorens, Annie ;
Nicoletti, Antonino ;
Letourneur, Didier ;
Colombier, Marie-Laure ;
Nazhat, Showan N. ;
Bouchard, Philippe ;
Chaussain, Catherine ;
Rochefort, Gael Y. .
SCIENTIFIC REPORTS, 2016, 6
[6]   The improvement of calvarial bone healing by durable nanogel-crosslinked materials [J].
Charoenlarp, Pornkawee ;
Rajendran, Arun Kumar ;
Fujihara, Rie ;
Kojima, Taisei ;
Nakahama, Ken-ichi ;
Sasaki, Yoshihiro ;
Akiyoshi, Kazunari ;
Takechi, Masaki ;
Iseki, Sachiko .
JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2018, 29 (15) :1876-1894
[7]   Mesenchymal stem cell sheets: a new cell-based strategy for bone repair and regeneration [J].
Chen, Meikai ;
Xu, Yifan ;
Zhang, Tan ;
Ma, Yuliang ;
Liu, Junquan ;
Yuan, Bo ;
Chen, Xuerong ;
Zhou, Ping ;
Zhao, Xiaofeng ;
Pang, Fei ;
Liang, Wenqing .
BIOTECHNOLOGY LETTERS, 2019, 41 (03) :305-318
[8]   Bone regeneration of calvarial defect using marine calcareous-derived beta- tricalcium phosphate macrospheres [J].
Chou, Joshua ;
Hao, Jia ;
Kuroda, Shinji ;
Ben-Nissan, Besim ;
Milthopre, Bruce ;
Otsuka, Makoto .
JOURNAL OF TISSUE ENGINEERING, 2014, 5
[9]   3D screening device for the evaluation of cell response to different electrospun microtopographies [J].
Criscenti, G. ;
Vasilevich, A. ;
Longoni, A. ;
De Maria, C. ;
van Blitterswijk, C. A. ;
Truckenmuller, R. ;
Vozzi, G. ;
De Boer, J. ;
Moroni, L. .
ACTA BIOMATERIALIA, 2017, 55 :310-322
[10]   Increased stem cells delivered using a silk gel/scaffold complex for enhanced bone regeneration [J].
Ding, Xun ;
Yang, Guangzheng ;
Zhang, Wenjie ;
Li, Guanglong ;
Lin, Shuxian ;
Kaplan, David L. ;
Jiang, Xinquan .
SCIENTIFIC REPORTS, 2017, 7