Thermal performance of triplex-tube latent heat storage exchanger: simultaneous heat storage and hot water supply via condensation heat recovery

被引:36
作者
Cao, Xiaoling [1 ]
Zhang, Nan [1 ]
Yuan, Yanping [1 ]
Luo, Xiaolong [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Mech Engn, Chengdu 610031, Peoples R China
关键词
Heat recovery; Triplex tube heat exchanger; Latent heat thermal energy storage; Phase change; PHASE-CHANGE MATERIALS; ENERGY-STORAGE; SOLIDIFICATION ENHANCEMENT; SYSTEM; PCM; NANOPARTICLES; FINS;
D O I
10.1016/j.renene.2020.05.059
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In refrigeration system, refrigerant condensing will release a lot of heat. Using condensation heat from cold storage refrigeration system to provide heat for domestic hot water preparation and industrial hot water supply promotes energy conservation, and latent heat thermal energy storage (LHTES) has unique advantages. Compared with the shell-and-tube heat exchanger, the triplex-tube heat exchanger (TTHE) can achieve simultaneous heat storage and hot water preparation, but few studies have investigated the thermal performance. A mathematical model of TTHE is established by enthalpy method, and the dynamic characteristics has been studied. The results show that liquid sensible heat transfer, latent heat transfer and solid sensible heat transfer are three stages experience in the whole process. The heat storage rate increases and the heat release rate decreases gradually with the opposite trend, but finally reaches to balance with a stable value. The higher the HTF inlet temperature is, the higher the outlet temperature is, but the temperature difference in stable stage is smaller. With the increase of mass flow rate, its effect on heat release gradually weakened. Under the calculation conditions, phase change material with 80 degrees C transformation temperature for cold storage refrigeration system condensing heat recovery is reasonable. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页码:616 / 625
页数:10
相关论文
共 24 条
[1]   Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins [J].
Abdulateef, Ammar M. ;
Abdulateef, Jasim ;
Mat, Sohif ;
Sopian, Kamaruzzaman ;
Elhub, Bashir ;
Mussa, Munther Abdullah .
INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2018, 90 :73-84
[2]   A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS) [J].
Agyenim, Francis ;
Hewitt, Neil ;
Eames, Philip ;
Smyth, Mervyn .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2010, 14 (02) :615-628
[3]   Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins [J].
Al-Abidi, Abduljalil A. ;
Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Mohammad, Abdulrahman Th .
ENERGY AND BUILDINGS, 2014, 68 :33-41
[4]   Review of thermal energy storage for air conditioning systems [J].
Al-Abidi, Abduljalil A. ;
Bin Mat, Sohif ;
Sopian, K. ;
Sulaiman, M. Y. ;
Lim, C. H. ;
Th, Abdulrahman .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2012, 16 (08) :5802-5819
[5]   Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material [J].
Alizadeh, M. ;
Hosseinzadeh, Kh ;
Shahavi, M. H. ;
Ganji, D. D. .
APPLIED THERMAL ENGINEERING, 2019, 163
[6]   Effect of porosity of conducting matrix on a phase change energy storage device [J].
Atal, Aditya ;
Wang, Yuping ;
Harsha, Mayur ;
Sengupta, Subrata .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2016, 93 :9-16
[7]   Numerical investigation on optimal number of longitudinal fins in horizontal annular phase change unit at different wall temperatures [J].
Cao, Xiaoling ;
Yuan, Yanping ;
Xiang, Bo ;
Sun, Liangliang ;
Zhang Xingxing .
ENERGY AND BUILDINGS, 2018, 158 :384-392
[8]   A review on phase-change materials: Mathematical modeling and simulations [J].
Dutil, Yvan ;
Rousse, Daniel R. ;
Ben Salah, Nizar ;
Lassue, Stephane ;
Zalewski, Laurent .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :112-130
[9]   Enhance heat transfer for phase-change materials in triplex tube heat exchanger with selected arrangements of fins [J].
Eslamnezhad, H. ;
Rahimi, Asghar B. .
APPLIED THERMAL ENGINEERING, 2017, 113 :813-821
[10]   A new heat recovery technique for air-conditioning/heat-pump system [J].
Gong, Guangcai ;
Zeng, Wei ;
Wang, Liping ;
Wu, Chih .
APPLIED THERMAL ENGINEERING, 2008, 28 (17-18) :2360-2370