Classicality in discrete Wigner functions

被引:95
作者
Cormick, C
Galvao, EF
Gottesman, D
Paz, JP
Pittenger, AO
机构
[1] UBA, FCEyN, Dept Fis Juan Jose Giambiagi, RA-1428 Buenos Aires, DF, Argentina
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[3] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 87545 USA
[4] Univ Maryland Baltimore Cty, Dept Math & Stat, Baltimore, MD 21250 USA
来源
PHYSICAL REVIEW A | 2006年 / 73卷 / 01期
基金
美国国家科学基金会;
关键词
D O I
10.1103/PhysRevA.73.012301
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Gibbons , [Phys. Rev. A 70, 062101 (2004)] have recently defined discrete Wigner functions W to represent quantum states in a Hilbert space with finite dimension. We show that such a class of Wigner functions W can be defined so that the only pure states having non-negative W for all such functions are stabilizer states, as conjectured by Galvao, [Phys. Rev. A 71, 042302 (2005)]. We also show that the unitaries preserving non-negativity of W for all definitions of W in the class form a subgroup of the Clifford group. This means pure states with non-negative W and their associated unitary dynamics are classical in the sense of admitting an efficient classical simulation scheme using the stabilizer formalism.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
[Anonymous], QUANTPH0406175
[2]   Symmetric informationally complete-positive operator valued measures and the extended Clifford group [J].
Appleby, DM .
JOURNAL OF MATHEMATICAL PHYSICS, 2005, 46 (05)
[3]   A new proof for the existence of mutually unbiased bases [J].
Bandyopadhyay, S ;
Boykin, PO ;
Roychowdhury, V ;
Vatan, F .
ALGORITHMICA, 2002, 34 (04) :512-528
[4]   Efficient classical simulation of continuous variable quantum information processes [J].
Bartlett, SD ;
Sanders, BC ;
Braunstein, SL ;
Nemoto, K .
PHYSICAL REVIEW LETTERS, 2002, 88 (09) :4-979044
[5]   Mutually unbiased bases and the complementarity polytope [J].
Bengtsson, I ;
Ericsson, A .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2005, 12 (02) :107-120
[6]  
BENGTSSON I, QUANTPH0406174
[7]   Universal quantum computation with ideal Clifford gates and noisy ancillas [J].
Bravyi, S ;
Kitaev, A .
PHYSICAL REVIEW A, 2005, 71 (02)
[8]   METHOD FOR CALCULATING TRHN IN SOLID-STATE THEORY [J].
BUOT, FA .
PHYSICAL REVIEW B, 1974, 10 (08) :3700-3705
[9]   JOINT WIGNER DISTRIBUTION FOR SPIN-1/2 PARTICLES [J].
COHEN, L ;
SCULLY, MO .
FOUNDATIONS OF PHYSICS, 1986, 16 (04) :295-310
[10]  
Feynman R., 1987, Quantum implications: Essays in honor of David Bohm, P235, DOI DOI 10.1088/0031-9112/39/3/039