Width and finite extinction time of Ricci flow

被引:46
作者
Colding, Tobias H. [1 ,2 ]
Minicozzi, William P., II [3 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Courant Inst Math Sci, New York, NY 10012 USA
[3] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
来源
GEOMETRY & TOPOLOGY | 2008年 / 12卷
关键词
Bubble convergence; Extinction; Harmonic map; Min-max; Ricci flow; Sweepout; Width;
D O I
10.2140/gt.2008.12.2537
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This is an expository article with complete proofs intended for a general nonspecialist audience. The results are two-fold. First, we discuss a geometric invariant, that we call the width, of a manifold and show how it can be realized as the sum of areas of minimal 2-spheres. For instance, when M is a homotopy 3-sphere, the width is loosely speaking the area of the smallest 2 sphere needed to 'pull over' M. Second, we use this to conclude that Hamilton's Ricci flow becomes extinct in finite time on any homotopy 3-sphere.
引用
收藏
页码:2537 / 2586
页数:50
相关论文
共 39 条
[1]   RIEMANNS MAPPING THEOREM FOR VARIABLE METRICS [J].
AHLFORS, L ;
BERS, L .
ANNALS OF MATHEMATICS, 1960, 72 (02) :385-404
[2]  
Almgren F.J, 1965, THEORY VARIFOLDS
[3]  
[Anonymous], 1999, COURANT LECT NOTES M
[4]  
[Anonymous], 2002, CAMBRIDGE TRACTS MAT
[5]  
[Anonymous], ARXIVMATHDG0307245
[6]  
[Anonymous], ARXIVMATHDG0303109
[7]  
BIRKHOFF GD, 1927, AM MATH SOC C PUBL, V9
[8]   Dynamical systems with two degrees of freedom [J].
Birkhoff, George D. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1917, 18 (1-4) :199-300
[9]   Estimates for the extinction time for the Ricci flow on certain 3-manifolds and a question of Perelman [J].
Colding, TH ;
Minicozzi, WP .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (03) :561-569
[10]   Three circles theorems for Schrodinger operators on cylindrical ends and geometric applications [J].
Colding, Tobias H. ;
De Lellis, Camillo ;
Minicozzi, William P., II .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2008, 61 (11) :1540-1602