Mitochondrial permeability transition pore opening induces the initial process of renal calcium crystallization

被引:57
|
作者
Niimi, Kazuhiro [1 ]
Yasui, Takahiro [1 ]
Hirose, Masahito [2 ]
Hamamoto, Shuzo [1 ]
Itoh, Yasunori [3 ]
Okada, Atsushi [1 ]
Kubota, Yasue [1 ]
Kojima, Yoshiyuki [1 ]
Tozawa, Keiichi [1 ]
Sasaki, Shoichi [1 ]
Hayashi, Yutaro [1 ]
Kohri, Kenjiro [1 ]
机构
[1] Nagoya City Univ, Grad Sch Med Sci, Dept Nephrourol, Nagoya, Aichi 4678601, Japan
[2] Kainan Hosp, Dept Urol, Yatomi, Japan
[3] Nagoya City W Med Ctr, Dept Urol, Nagoya, Aichi, Japan
关键词
Mitochondrial permeability transition pore; Renal calcium crystallization; Cyclosporine A; Oxidative stress; Renal tubular cell injury; Free radicals; OXALATE CRYSTAL ATTACHMENT; URINARY STONE PROTEIN; CYCLOSPORINE-A; EPITHELIAL-CELLS; OXIDATIVE STRESS; N-METHYL-4-ISOLEUCINE CYCLOSPORINE; MOUSE KIDNEY; MALE RATS; OSTEOPONTIN; INJURY;
D O I
10.1016/j.freeradbiomed.2012.01.005
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Renal tubular cell injury induced by oxidative stress via mitochondrial collapse is thought to be the initial process of renal calcium crystallization. Mitochondrial collapse is generally caused by mitochondrial permeability transition pore (mPTP) opening, which can be blocked by cyclosporine A (CsA). Definitive evidence for the involvement of mPTP opening in the initial process of renal calcium crystallization, however, is lacking. In this study, we examined the physiological role of mPTP opening in renal calcium crystallization in vitro and in vivo. In the in vitro study, cultured renal tubular cells were exposed to calcium oxalate monohydrate (COM) crystals and treated with CsA (2 mu M). COM crystals induced depolarization of the mitochondrial membrane potential and generated oxidative stress as evaluated by Cu-Zn SOD and 4-HNE. Furthermore, the expression of cytochrome c and cleaved caspase 3 was increased and these effects were prevented by CsA. In the in vivo study, Sprague-Dawley rats were administered 1% ethylene glycol (EG) to generate a rat kidney stone model and then treated with CsA (2.5, 5.0, and 10.0 mg/kg/day) for 14 days. EG administration induced renal calcium crystallization, which was prevented by CsA. Mitochondrial collapse was demonstrated by transmission electron microscopy, and oxidative stress was evaluated by measuring Cu-Zn SOD, MDA, and 8-OHdG generated by EG administration, all of which were prevented by CsA. Collectively, our results provide compelling evidence for a role of mPTP opening and its associated mitochondrial collapse, oxidative stress, and activation of the apoptotic pathway in the initial process of renal calcium crystallization. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:1207 / 1217
页数:11
相关论文
共 50 条
  • [21] The mitochondrial permeability transition pore is a dispensable element for mitochondrial calcium efflux
    De Marchi, Elena
    Bonora, Massimo
    Giorgi, Carlotta
    Pinton, Paolo
    CELL CALCIUM, 2014, 56 (01) : 1 - 13
  • [22] Doxorubicin leads to increased oxidative stress and opening of the calcium-induced mitochondrial permeability transition pore
    Denysova, M. V.
    Korkach, Y. P.
    Strutynska, N. A.
    Sagach, V. F.
    EUROPEAN JOURNAL OF HEART FAILURE, 2024, 26 : 70 - 70
  • [23] Hypothermic Cardioprotection Attenuates Mitochondrial Permeability Transition Pore Opening and Calcium Loading in Isolated Cardiac Mitochondria
    Haumann, Johan
    Heisner, James S.
    Boelens, Age D.
    Aldakkak, Mohammed
    Stowe, David F.
    Camara, Amadou K. S.
    BIOPHYSICAL JOURNAL, 2010, 98 (03) : 735A - 736A
  • [24] Methylmercury induces the opening of the permeability transition pore in rat liver mitochondria
    Bragadin, M
    Marton, D
    Manente, S
    Grasso, M
    Toninello, A
    JOURNAL OF INORGANIC BIOCHEMISTRY, 2002, 89 (1-2) : 159 - 162
  • [25] Effect of opening of mitochondrial ATP-sensitive K channels on mitochondrial permeability transition pore opening
    Ishida, H
    Higashijima, N
    Nakazawa, H
    Nakaya, H
    Sato, T
    CIRCULATION, 2004, 110 (17) : 207 - 207
  • [26] Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore
    Gincel, D
    Shoshan-Barmatz, V
    JOURNAL OF BIOENERGETICS AND BIOMEMBRANES, 2004, 36 (02) : 179 - 186
  • [27] Mitochondrial DNA mutations cause resistance to opening of the permeability transition pore
    Mott, Justin L.
    Zhang, Dekui
    Chang, Shin-Wen
    Zassenhaus, H. Peter
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (5-6): : 596 - 603
  • [28] Inhibition of mitochondrial permeability transition pore opening: the holy grail of cardioprotection
    Gerd Heusch
    Kerstin Boengler
    Rainer Schulz
    Basic Research in Cardiology, 2010, 105 : 151 - 154
  • [29] Involvement of mitochondrial permeability transition pore opening in α-bisabolol induced apoptosis
    Cavalieri, Elisabetta
    Bergamini, Christian
    Mariotto, Sofia
    Leoni, Serena
    Perbellini, Luigi
    Darra, Elena
    Suzuki, Hisanori
    Fato, Romana
    Lenaz, Giorgio
    FEBS JOURNAL, 2009, 276 (15) : 3990 - 4000
  • [30] Acute stress delays brain mitochondrial permeability transition pore opening
    Batandier, Cecile
    Poulet, Laurent
    Hininger, Isabelle
    Couturier, Karine
    Fontaine, Eric
    Roussel, Anne-Marie
    Canini, Frederic
    JOURNAL OF NEUROCHEMISTRY, 2014, 131 (03) : 314 - 322