Negative emissions-Part 2: Costs, potentials and side effects

被引:977
作者
Fuss, Sabine [1 ]
Lamb, William F. [1 ]
Callaghan, Max W. [1 ,2 ]
Hilaire, Jerome [1 ]
Creutzig, Felix [1 ,3 ]
Amann, Thorben [4 ]
Beringer, Tim [1 ]
Garcia, Wagner de Oliveira [4 ]
Hartmann, Jens [4 ]
Khanna, Tarun [1 ]
Luderer, Gunnar [5 ]
Nemet, Gregory F. [6 ]
Rogelj, Joeri [7 ,8 ]
Smith, Pete [9 ]
Vicente, Jose Luis Vicente [1 ]
Wilcox, Jennifer [10 ]
Dominguez, Maria del Mar Zamora [1 ]
Minx, Jan C. [1 ,2 ]
机构
[1] Mercator Res Inst Global Commons & Climate Change, Torgauer Str 12-15,EUREF Campus 19, D-10829 Berlin, Germany
[2] Univ Leeds, Sch Earth & Environm, Leeds LS2 9JT, W Yorkshire, England
[3] Tech Univ Berlin, Str 17,Juni 135, D-10623 Berlin, Germany
[4] Univ Hamburg, Bundesstr 55, D-20146 Hamburg, Germany
[5] Potsdam Inst Climate Impact Res, D-14473 Potsdam, Germany
[6] Univ Wisconsin Madison, La Follette Sch Publ Affairs, 1225 Observ Dr, Madison, WI 53706 USA
[7] IIASA, ENE Program, Laxenburg, Austria
[8] Swiss Fed Inst Technol, Inst Atmospher & Climate Sci, Zurich, Switzerland
[9] Univ Aberdeen, Inst Biol & Environm Sci, 23 St Machar Dr, Aberdeen AB24 3UU, Scotland
[10] Colorado Sch Mines, Dept Chem & Biol Engn, Golden, CO 80401 USA
基金
英国自然环境研究理事会; 英国工程与自然科学研究理事会;
关键词
climate change mitigation; negative emission technologies; carbon dioxide removal; scenarios; SOIL CARBON SEQUESTRATION; CLIMATE-CHANGE MITIGATION; GREENHOUSE-GAS MITIGATION; CO2 STORAGE CAPACITY; GLOBAL BIOENERGY POTENTIALS; LIFE-CYCLE ASSESSMENT; LARGE-SCALE CAPTURE; LAND-USE CHANGE; BIOMASS ENERGY; ATMOSPHERIC CO2;
D O I
10.1088/1748-9326/aabf9f
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The most recent IPCC assessment has shown an important role for negative emissions technologies (NETs) in limiting global warming to 2 degrees C cost-effectively. However, a bottom-up, systematic, reproducible, and transparent literature assessment of the different options to remove CO2 from the atmosphere is currently missing. In part 1 of this three-part review on NETs, we assemble a comprehensive set of the relevant literature so far published, focusing on seven technologies: bioenergy with carbon capture and storage (BECCS), afforestation and reforestation, direct air carbon capture and storage (DACCS), enhanced weathering, ocean fertilisation, biochar, and soil carbon sequestration. In this part, part 2 of the review, we present estimates of costs, potentials, and side-effects for these technologies, and qualify them with the authors' assessment. Part 3 reviews the innovation and scaling challenges that must be addressed to realise NETs deployment as a viable climate mitigation strategy. Based on a systematic review of the literature, our best estimates for sustainable global NET potentials in 2050 are 0.5-3.6 GtCO(2) yr(-1) for afforestation and reforestation, 0.5-5GtCO(2) yr(-1) for BECCS, 0.5-2GtCO(2) yr(-1) for biochar, 2-4 GtCO(2) yr(-1) for enhanced weathering, 0.5-5 GtCO(2) yr(-1) for DACCS, and up to 5GtCO(2) yr(-1) for soil carbon sequestration. Costs vary widely across the technologies, as do their permanency and cumulative potentials beyond 2050. It is unlikely that a single NET will be able to sustainably meet the rates of carbon uptake described in integrated assessment pathways consistent with 1.5 degrees C of global warming.
引用
收藏
页数:47
相关论文
共 413 条
[1]   On the climate change mitigation potential of CO2 conversion to fuels [J].
Abanades, J. Carlos ;
Rubin, Edward S. ;
Mazzotti, Marco ;
Herzog, Howard J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (12) :2491-2499
[2]   Biomass Combustion with in Situ CO2 Capture with CaO. I. Process Description and Economics [J].
Abanades, Juan C. ;
Alonso, Monica ;
Rodriguez, Nuria .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (11) :6972-6981
[3]   A mixed integer nonlinear programming (MINLP) supply chain optimisation framework for carbon negative electricity generation using biomass to energy with CCS (BECCS) in the UK [J].
Akgul, O. ;
Mac Dowell, N. ;
Papageorgiou, L. G. ;
Shah, N. .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2014, 28 :189-202
[4]   GHG emission pathways until 2300 for the 1.5 A°C temperature rise target and the mitigation costs achieving the pathways [J].
Akimoto, Keigo ;
Sano, Fuminori ;
Tomoda, Toshimasa .
MITIGATION AND ADAPTATION STRATEGIES FOR GLOBAL CHANGE, 2018, 23 (06) :839-852
[5]   Comparative techno-economic assessment of biomass and coal with CCS technologies in a pulverized combustion power plant in the United Kingdom [J].
Al-Qayim, Khalidah ;
Nimmo, William ;
Pourkashanian, Mohammed .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2015, 43 :82-92
[6]  
Anda M., 2012, Indonesian Journal of Agricultural Science, V13, P54
[7]   Improving chemical properties of a highly weathered soil using finely ground basalt rocks [J].
Anda, Markus ;
Shamshuddin, J. ;
Fauziah, C. I. .
CATENA, 2015, 124 :147-161
[8]   The trouble with negative emissions [J].
Anderson, Kevin ;
Peters, Glen .
SCIENCE, 2016, 354 (6309) :182-183
[9]   Duality in climate science [J].
Anderson, Kevin .
NATURE GEOSCIENCE, 2015, 8 (12) :898-900
[10]   Biophysical considerations in forestry for climate protection [J].
Anderson, Ray G. ;
Canadell, Josep G. ;
Randerson, James T. ;
Jackson, Robert B. ;
Hungate, Bruce A. ;
Baldocchi, Dennis D. ;
Ban-Weiss, George A. ;
Bonan, Gordon B. ;
Caldeira, Ken ;
Cao, Long ;
Diffenbaugh, Noah S. ;
Gurney, Kevin R. ;
Kueppers, Lara M. ;
Law, Beverly E. ;
Luyssaert, Sebastiaan ;
O'Halloran, Thomas L. .
FRONTIERS IN ECOLOGY AND THE ENVIRONMENT, 2011, 9 (03) :174-182