An Ensemble Classification Approach to Motor-Imagery Brain State Discrimination Problem

被引:0
作者
Datta, Ankita [1 ]
Chatterjee, Rajdeep [1 ]
Sanyal, Debarshi Kumar [1 ]
Guha, Dibyajyoti [2 ]
机构
[1] KIIT Univ, Sch Comp Engn, Bhubaneswar 751024, India
[2] IMI Kolkata, Kolkata 700027, India
来源
2017 INTERNATIONAL CONFERENCE ON INFOCOM TECHNOLOGIES AND UNMANNED SYSTEMS (TRENDS AND FUTURE DIRECTIONS) (ICTUS) | 2017年
关键词
BCI; EEG; Motor-imagery; AAR; Band Power; Wavelet Energy-entropy; Ensemble Classifier; Cross-validation;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper focuses on the use of ensemble classifiers on motor imagery data to distinguish brain states. Raw EEG signal is filtered and represented separately in terms of following features: Band power (BP), wavelet based energy-entropy (Engent) and feature extracted with adaptive autoregressive (AAR) model. We tested the classifiers using both hold-out testing (termed Experiment-I) and 10-fold cross-validation with stratified sampling (called Experiment II). We observe from our empirical study that the ensemble classifier particularly the subspace variant outperforms others in terms of classification accuracies in both experiment-I and II. Features extracted with AAR and energy-entropy techniques provide most consistence performance for experiment-I and II respectively.
引用
收藏
页码:322 / 326
页数:5
相关论文
共 14 条
[1]   The Berlin brain-computer interface: non-medical uses of BCI technology [J].
Blankertz, Benjamin ;
Tangermann, Michael ;
Vidaurre, Carmen ;
Fazli, Siamac ;
Sannelli, Claudia ;
Haufe, Stefan ;
Maeder, Cecilia ;
Ramsey, Lenny ;
Sturm, Irene ;
Curio, Gabriel ;
Mueller, Klaus-Robert .
FRONTIERS IN NEUROSCIENCE, 2010, 4
[2]  
Brain Computer Interface Competition II, 2004, BRAIN COMP INT COMP
[3]  
Chatterjee Rajdeep, 2016, 2016 2nd International Conference on Computational Intelligence and Networks (CINE), P84, DOI 10.1109/CINE.2016.22
[4]  
Han J, 2012, MOR KAUF D, P1
[5]  
Lotte F., 2008, THESIS
[6]   Emotion Recognition From EEG Using Higher Order Crossings [J].
Petrantonakis, Panagiotis C. ;
Hadjileontiadis, Leontios J. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2010, 14 (02) :186-197
[7]  
Pfurtscheller C, 1998, IEEE T REHABIL ENG, V6, P316
[8]   Ensemble-based classifiers [J].
Rokach, Lior .
ARTIFICIAL INTELLIGENCE REVIEW, 2010, 33 (1-2) :1-39
[9]  
Schlogl A., 2000, The Electroencephalogram and the Adaptive Autoregressive Model: Theory and Applications
[10]  
Shawe-Taylor J., 2000, INTRO SUPPORT VECTOR, V204