Vapor compression refrigeration cycle for electronics cooling - Part I: Dynamic modeling and experimental validation

被引:39
作者
Catano, Juan [1 ]
Zhang, Tiejun [2 ]
Wen, John T. [3 ,4 ,5 ]
Jensen, Michael K. [3 ]
Peles, Yoav [3 ]
机构
[1] Emerson Climate Technol Inc, Sidney, OH 45365 USA
[2] Masdar Inst Sci & Technol, Mech Engn Program, Abu Dhabi, U Arab Emirates
[3] Rensselaer Polytech Inst, Dept Mech Aerosp & Nucl Engn, Troy, NY 12180 USA
[4] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, Troy, NY 12180 USA
[5] Rensselaer Polytech Inst, Ctr Automat Technol & Syst, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
Vapor compression cycle; Electronics cooling; Critical heat flux; Dynamic modeling; Critical heat flux enhancement; HORIZONTAL TUBES;
D O I
10.1016/j.ijheatmasstransfer.2013.06.075
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a first-principle lumped-parameter dynamic model and experimental validation of vapor compression cycles for electronics cooling. The model couples the dynamics of the heat exchangers with static empirical models for compressor and expansion valve. In contrast to past work on systems level modeling of refrigeration cycles, this paper focuses on imposed heat flux boundary condition, and the associated critical heat flux and critical vapor quality, in the evaporator. Using our vapor compression cycle testbed, we verify that the model prediction of the evaporator exit temperature and critical heat flux matches well with experimental measurements. The model is also used to search for operating conditions to enhance the critical heat flux. Experimental results show that at an undesired operating condition, even a small 5% change of heat flux could cause a wall temperature spike of over 100 degrees C, in contrast to 15 degrees C at a more advantageous operating conditions. For large heat flux transients, the onset of critical heat flux condition may be delayed, but its avoidance may require active refrigerant flow control. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:911 / 921
页数:11
相关论文
共 26 条
  • [1] [Anonymous], SERIES CHEM MECH ENG
  • [2] [Anonymous], ASHRAE T
  • [3] Bendapudi S., 2005, 40365 ASHRAE
  • [4] A comparison of moving-boundary and finite-volume formulations for transients in centrifugal chillers
    Bendapudi, Satyam
    Braun, James E.
    Groll, Eckhard A.
    [J]. INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2008, 31 (08): : 1437 - 1452
  • [5] Catano J., 2011, THESIS AEROSPACE NUC
  • [6] Collier JR Thome J.G., 1996, Convective Boiling and Condensation
  • [7] Moving-Boundary Heat Exchanger Models with Variable Outlet Phase
    Eldredge, Brian D.
    Rasmussen, Bryan P.
    Alleyne, Andrew G.
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2008, 130 (06): : 0610031 - 06100312
  • [8] Thermal Challenges in Next-Generation Electronic Systems
    Garimella, Suresh V.
    Fleischer, Amy S.
    Murthy, Jayathi Y.
    Keshavarzi, Ali
    Prasher, Ravi
    Patel, Chandrakant
    Bhavnani, Sushil H.
    Venkatasubramanian, R.
    Mahajan, Ravi
    Joshi, Y.
    Sammakia, Bahgat
    Myers, Bruce A.
    Chorosinski, Len
    Baelmans, Martine
    Sathyamurthy, Prabhu
    Raad, Peter E.
    [J]. IEEE TRANSACTIONS ON COMPONENTS AND PACKAGING TECHNOLOGIES, 2008, 31 (04): : 801 - 815
  • [9] A MOVING-BOUNDARY FORMULATION FOR MODELING TIME-DEPENDENT 2-PHASE FLOWS
    GRALD, EW
    MACARTHUR, JW
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 1992, 13 (03) : 266 - 272
  • [10] Modeling of vapor compression cycles for multivariable feedback control of HVAC systems
    He, XD
    Liu, S
    Asada, HH
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 1997, 119 (02): : 183 - 191