Unified approach for multiple sclerosis lesion segmentation on brain MRI

被引:100
|
作者
Sajja, BR
Datta, S
He, RJ
Mehta, M
Gupta, RK
Wolinsky, JS
Narayana, PA
机构
[1] Univ Texas, Sch Med, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[2] Sanjay Gandhi Postgrad Inst Med Sci, Dept Radiodiagnosis, Lucknow 226014, Uttar Pradesh, India
[3] Univ Texas, Sch Med, Dept Neurol, Houston, TX 77030 USA
关键词
segmentation; feature classification; multiple sclerosis; expectation maximization; hidden Markov random field; MRI;
D O I
10.1007/s10439-005-9009-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [41] Segmentation of multiple sclerosis lesions in brain MRI: A review of automated approaches
    Llado, Xavier
    Oliver, Arnau
    Cabezas, Mariano
    Freixenet, Jordi
    Vilanova, Joan C.
    Quiles, Ana
    Valls, Laia
    Ramio-Torrenta, Lluis
    Rovira, Alex
    INFORMATION SCIENCES, 2012, 186 (01) : 164 - 185
  • [42] A Longitudinal Method for Simultaneous Whole-Brain and Lesion Segmentation in Multiple Sclerosis
    Cerri, Stefano
    Hoopes, Andrew
    Greve, Douglas N.
    Muhlau, Mark
    Van Leemput, Koen
    MACHINE LEARNING IN CLINICAL NEUROIMAGING AND RADIOGENOMICS IN NEURO-ONCOLOGY, MLCN 2020, RNO-AI 2020, 2020, 12449 : 119 - 128
  • [43] Simultaneous lesion and brain segmentation in multiple sclerosis using deep neural networks
    McKinley, Richard
    Wepfer, Rik
    Aschwanden, Fabian
    Grunder, Lorenz
    Muri, Raphaela
    Rummel, Christian
    Verma, Rajeev
    Weisstanner, Christian
    Reyes, Mauricio
    Salmen, Anke
    Chan, Andrew
    Wagner, Franca
    Wiest, Roland
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [44] Deep Convolutional Encoder Networks for Multiple Sclerosis Lesion Segmentation
    Brosch, Tom
    Yoo, Youngjin
    Tang, Lisa Y. W.
    Li, David K. B.
    Traboulsee, Anthony
    Tam, Roger
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 3 - 11
  • [45] Comparative Multiple Sclerosis Lesion Segmentation in Magnetic Resonance Images
    Isoglu, Selin
    Koca, Elif Isikci
    Duru, Dilek Goksel
    2017 ELECTRIC ELECTRONICS, COMPUTER SCIENCE, BIOMEDICAL ENGINEERINGS' MEETING (EBBT), 2017,
  • [46] An SPM12 extension for multiple sclerosis lesion segmentation
    Roura, Eloy
    Oliver, Arnau
    Cabezas, Mariano
    Valverde, Sergi
    Pareto, Deborah
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    Llado, Xavier
    MEDICAL IMAGING 2016: IMAGE PROCESSING, 2016, 9784
  • [47] The influence of slice orientation on brain MRI lesion load measurement in multiple sclerosis
    Rovaris, M
    Sormani, MP
    Rocca, MA
    Comi, G
    Filippi, M
    MULTIPLE SCLEROSIS, 1997, 3 (06): : 382 - 384
  • [48] Correlation between brain MRI lesion volume and disability in patients with multiple sclerosis
    Mammi, S
    Filippi, M
    Martinelli, V
    Campi, A
    Colombo, B
    Scotti, G
    Canal, N
    Comi, G
    ACTA NEUROLOGICA SCANDINAVICA, 1996, 94 (02): : 93 - 96
  • [49] Automated detection of multiple sclerosis lesions in serial brain MRI
    Llado, Xavier
    Ganiler, Onur
    Oliver, Arnau
    Marti, Robert
    Freixenet, Jordi
    Valls, Laia
    Vilanova, Joan C.
    Ramio-Torrenta, Lluis
    Rovira, Alex
    NEURORADIOLOGY, 2012, 54 (08) : 787 - 807
  • [50] Optimal filter design for multiple sclerosis lesions segmentation from regions of interest in brain MRI
    Ghazel, Mohsen
    Traboulsee, Anthony
    Ward, Rabab K.
    2006 IEEE INTERNATIONAL SYMPOSIUM ON SIGNAL PROCESSING AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2006, : 1 - +