Unified approach for multiple sclerosis lesion segmentation on brain MRI

被引:100
|
作者
Sajja, BR
Datta, S
He, RJ
Mehta, M
Gupta, RK
Wolinsky, JS
Narayana, PA
机构
[1] Univ Texas, Sch Med, Dept Diagnost & Intervent Imaging, Houston, TX 77030 USA
[2] Sanjay Gandhi Postgrad Inst Med Sci, Dept Radiodiagnosis, Lucknow 226014, Uttar Pradesh, India
[3] Univ Texas, Sch Med, Dept Neurol, Houston, TX 77030 USA
关键词
segmentation; feature classification; multiple sclerosis; expectation maximization; hidden Markov random field; MRI;
D O I
10.1007/s10439-005-9009-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The presence of large number of false lesion classification on segmented brain MR images is a major problem in the accurate determination of lesion volumes in multiple sclerosis (MS) brains. In order to minimize the false lesion classifications, a strategy that combines parametric and nonparametric techniques is developed and implemented. This approach uses the information from the proton density (PD)- and T2-weighted and fluid attenuation inversion recovery (FLAIR) images. This strategy involves CSF and lesion classification using the Parzen window classifier. Image processing, morphological operations, and ratio maps of PD- and T2-weighted images are used for minimizing false positives. Contextual information is exploited for minimizing the false negative lesion classifications using hidden Markov random field-expectation maximization (HMRF-EM) algorithm. Lesions are delineated using fuzzy connectivity. The performance of this algorithm is quantitatively evaluated on 23 MS patients. Similarity index, percentages of over, under, and correct estimations of lesions are computed by spatially comparing the results of present procedure with expert manual segmentation. The automated processing scheme detected 80% of the manually segmented lesions in the case of low lesion load and 93% of the lesions in those cases with high lesion load.
引用
收藏
页码:142 / 151
页数:10
相关论文
共 50 条
  • [21] Convolutional Neural Network Approach for Multiple Sclerosis Lesion Segmentation
    Messaoud, Nada Haj
    Mansour, Asma
    Ayari, Rim
    Ben Abdallah, Asma
    Aissi, Mouna
    Frih, Mahbouba
    Bedoui, Mohamed Hedi
    INTELLIGENT DATA ENGINEERING AND AUTOMATED LEARNING - IDEAL 2022, 2022, 13756 : 540 - 548
  • [22] Delve into Multiple Sclerosis (MS) lesion exploration: A modified attention U-Net for MS lesion segmentation in Brain MRI*
    Hashemi, Maryam
    Akhbari, Mahsa
    Jutten, Christian
    COMPUTERS IN BIOLOGY AND MEDICINE, 2022, 145
  • [23] Deep 2D Encoder-Decoder Convolutional Neural Network for Multiple Sclerosis Lesion Segmentation in Brain MRI
    Aslani, Shahab
    Dayan, Michael
    Murino, Vittorio
    Sona, Diego
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2018, PT I, 2019, 11383 : 132 - 141
  • [24] Review of Deep Learning Approaches for the Segmentation of Multiple Sclerosis Lesions on Brain MRI
    Zeng, Chenyi
    Gu, Lin
    Liu, Zhenzhong
    Zhao, Shen
    FRONTIERS IN NEUROINFORMATICS, 2020, 14
  • [25] SYNERGYNET: A FUSION FRAMEWORK FOR MULTIPLE SCLEROSIS BRAIN MRI SEGMENTATION WITH LOCAL REFINEMENT
    Vang, Yeeleng S.
    Cao, Yingxin
    Chang, Peter D.
    Chow, Daniel S.
    Brandt, Alexander U.
    Paul, Friedemann
    Scheel, Michael
    Xie, Xiaohui
    2020 IEEE 17TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2020), 2020, : 131 - 135
  • [26] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Ali Alijamaat
    Alireza NikravanShalmani
    Peyman Bayat
    International Journal of Computer Assisted Radiology and Surgery, 2021, 16 : 1459 - 1467
  • [27] Dual-Sensitivity Multiple Sclerosis Lesion and CSF Segmentation for Multichannel 3T Brain MRI
    Meier, Dominik S.
    Guttmann, Charles R. G.
    Tummala, Subhash
    Moscufo, Nicola
    Cavallari, Michele
    Tauhid, Shahamat
    Bakshi, Rohit
    Weiner, Howard L.
    JOURNAL OF NEUROIMAGING, 2018, 28 (01) : 36 - 47
  • [28] Multiple sclerosis lesion segmentation from brain MRI using U-Net based on wavelet pooling
    Alijamaat, Ali
    NikravanShalmani, Alireza
    Bayat, Peyman
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2021, 16 (09) : 1459 - 1467
  • [29] Multiple sclerosis lesion segmentation: revisiting weighting mechanisms for federated learning
    Liu, Dongnan
    Cabezas, Mariano
    Wang, Dongang
    Tang, Zihao
    Bai, Lei
    Zhan, Geng
    Luo, Yuling
    Kyle, Kain
    Ly, Linda
    Yu, James
    Shieh, Chun-Chien
    Nguyen, Aria
    Kandasamy Karuppiah, Ettikan
    Sullivan, Ryan
    Calamante, Fernando
    Barnett, Michael
    Ouyang, Wanli
    Cai, Weidong
    Wang, Chenyu
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [30] A toolbox for multiple sclerosis lesion segmentation
    Eloy Roura
    Arnau Oliver
    Mariano Cabezas
    Sergi Valverde
    Deborah Pareto
    Joan C. Vilanova
    Lluís Ramió-Torrentà
    Àlex Rovira
    Xavier Lladó
    Neuroradiology, 2015, 57 : 1031 - 1043