Mathematical modeling and verification of pulse electrochemical micromachining of microtools

被引:25
作者
Kamaraj, Abishek B. [1 ]
Sundaram, M. M. [1 ]
机构
[1] Univ Cincinnati, Sch Dynam Syst, Micro & Nano Mfg Lab, Cincinnati, OH 45221 USA
基金
美国国家科学基金会;
关键词
Electrochemical machining; Mathematical model; Micromachining; Microtool fabrication; Tungsten; ACCURATE NUMERICAL-SIMULATION; DEPENDENT MULTIION MODEL; TOOL; PART; FABRICATION;
D O I
10.1007/s00170-013-4896-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Pulse electrochemical micromachining (PECMM) is an unconventional manufacturing method suitable for the production of micro-sized components on a wide range of electrically conductive materials. PECMM in this study has been used to manufacture microtools. The non-contact nature of PECMM has necessitated the modeling of the process to estimate the anodic profile (microtool profile). This paper presents a mathematical model for predicting the diameter of the microtools fabricated by PECMM process. Tungsten microtools of diameters less than 100 mu m were fabricated using an in-house built microelectrochemical machining system. Experimental results confirm the theoretical prediction of reduction in tool diameter with respect to increasing machining time. Further, from the experimental verification, it was found that the deviations in the tool diameters were within 9 % of the theoretical predictions.
引用
收藏
页码:1055 / 1061
页数:7
相关论文
共 36 条
[1]  
Balsamy Kamaraj A, 2012, ASME 2012 INT MAN SC
[2]   Study of Micro-Abrasive Tool-Making by Pulse Plating Using Taguchi Method [J].
Dabholkar, Anuj ;
Sundaram, Murali M. .
MATERIALS AND MANUFACTURING PROCESSES, 2012, 27 (11) :1233-1238
[3]   A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part II: Numerical simulation [J].
Deconinck, D. ;
Van Damme, S. ;
Deconinck, J. .
ELECTROCHIMICA ACTA, 2012, 69 :120-127
[4]   A temperature dependent multi-ion model for time accurate numerical simulation of the electrochemical machining process. Part I: Theoretical basis [J].
Deconinck, D. ;
Van Damme, S. ;
Deconinck, J. .
ELECTROCHIMICA ACTA, 2012, 60 :321-328
[5]   Fabrication of tungsten microelectrodes using pulsed electrochemical machining [J].
Fan, Zhi-Wen ;
Hourng, Lih-Wu ;
Wang, Cheng-Yu .
PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2010, 34 (03) :489-496
[6]   Influence of vibration on micro-tool fabrication by electrochemical machining [J].
Ghoshal, B. ;
Bhattacharyya, B. .
INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE, 2013, 64 :49-59
[7]   Experimental research of electrochemical mechanical polishing(ECMP) for Micro tool electrode [J].
Guo, Shuai ;
Guo, Z. N. ;
Luo, Hongping ;
Gu, Wencai .
ADVANCED MANUFACTURING TECHNOLOGY, PTS 1-3, 2011, 314-316 :1846-1850
[8]   Optimizing machining parameters of silicon carbide ceramics with ED milling and mechanical grinding combined process [J].
Ji, Renjie ;
Liu, Yonghong ;
Zhang, Yanzhen ;
Cai, Baoping ;
Li, Hang ;
Ma, Jianmin .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2010, 51 (1-4) :195-204
[9]   Ultra high aspect ratio penetrating metal microelectrodes for biomedical applications [J].
Kamaraj, Abishek B. ;
Sundaram, Murali M. ;
Mathew, Ronnie .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2013, 19 (02) :179-186
[10]   Micro electrochemical machining of 3D micro structure using dilute sulfuric acid [J].
Kim, BH ;
Na, CW ;
Lee, YS ;
Choi, DK ;
Chu, CN .
CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2005, 54 (01) :191-194