Boundary value problems for semilinear differential inclusions of fractional order in a Banach space

被引:24
作者
Kamenskii, Mikhail [1 ,2 ]
Obukhovskii, Valeri [2 ,3 ]
Petrosyan, Garik [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Voronezh State Univ, Fac Math, Voronezh, Russia
[2] RUDN Univ, Dept Nonlinear Anal & Optimizat, Moscow, Russia
[3] Voronezh State Pedag Univ, Fac Math & Phys, Voronezh, Russia
[4] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
关键词
Differential inclusion; fractional derivative; solution set; R-delta-set; translation multioperator; measure of noncompactness; condensing multimap; fixed point; periodic problem; anti-periodic problem; EXISTENCE;
D O I
10.1080/00036811.2016.1277583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we show that the solution set of a fractional order semilinear differential inclusion in a Banach space has the topological structure of an R-delta-set. This result allows to apply a fixed point result for condensing multimaps to the translation multioperator along the trajectories of such inclusion and to prove the existence of solutions satisfying periodic and anti-periodic boundary value conditions. An example concerning with a fractional order feedback control system is presented.
引用
收藏
页码:571 / 591
页数:21
相关论文
共 32 条
[21]  
Obukhovskii V, 2010, FIXED POINT THEOR-RO, V11, P85
[22]  
Podlubny I., 1999, Fractional differential equations
[23]  
Samko S. G., 1993, Fractional Integrals and Derivatives: Theory and Applications, DOI DOI 10.1007/S10957-022-02125-9
[24]  
Tarasov VE, 2011, NONLINEAR PHYS SCI, P1
[25]   DECAY SOLUTIONS FOR A CLASS OF FRACTIONAL DIFFERENTIAL VARIATIONAL INEQUALITIES [J].
Tran Dinh Ke ;
Nguyen Van Loi ;
Obukhovskii, Valeri .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (03) :531-553
[26]   On a class of fractional order differential inclusions with infinite delays [J].
Tran Dinh Ke ;
Obukhovskii, Valeri ;
Wong, Ngai-Ching ;
Yao, Jen-Chih .
APPLICABLE ANALYSIS, 2013, 92 (01) :115-137
[27]   Nonlocal impulsive fractional differential inclusions with fractional sectorial operators on Banach spaces [J].
Wang, JinRong ;
Ibrahim, Ahmed Gamal ;
Feckan, Michal .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :103-118
[28]  
Wang JR, 2016, ELECT J QUAL THEORY
[29]   Abstract fractional Cauchy problems with almost sectorial operators [J].
Wang, Rong-Nian ;
Chen, De-Han ;
Xiao, Ti-Jun .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 252 (01) :202-235
[30]   On approximate controllability of fractional stochastic neutral integro-differential inclusions with infinite delay [J].
Yan, Zuomao ;
Lu, Fangxia .
APPLICABLE ANALYSIS, 2015, 94 (06) :1235-1258