Boundary value problems for semilinear differential inclusions of fractional order in a Banach space

被引:24
作者
Kamenskii, Mikhail [1 ,2 ]
Obukhovskii, Valeri [2 ,3 ]
Petrosyan, Garik [3 ]
Yao, Jen-Chih [4 ]
机构
[1] Voronezh State Univ, Fac Math, Voronezh, Russia
[2] RUDN Univ, Dept Nonlinear Anal & Optimizat, Moscow, Russia
[3] Voronezh State Pedag Univ, Fac Math & Phys, Voronezh, Russia
[4] China Med Univ, Ctr Gen Educ, Taichung, Taiwan
关键词
Differential inclusion; fractional derivative; solution set; R-delta-set; translation multioperator; measure of noncompactness; condensing multimap; fixed point; periodic problem; anti-periodic problem; EXISTENCE;
D O I
10.1080/00036811.2016.1277583
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we show that the solution set of a fractional order semilinear differential inclusion in a Banach space has the topological structure of an R-delta-set. This result allows to apply a fixed point result for condensing multimaps to the translation multioperator along the trajectories of such inclusion and to prove the existence of solutions satisfying periodic and anti-periodic boundary value conditions. An example concerning with a fractional order feedback control system is presented.
引用
收藏
页码:571 / 591
页数:21
相关论文
共 32 条
[1]  
Abbas S., 2012, TOPICS FRACTIONAL DI, DOI 10.1007/978-1-4614-4036-9
[2]   NEW STABILITY RESULTS FOR PARTIAL FRACTIONAL DIFFERENTIAL INCLUSIONS WITH NOT INSTANTANEOUS IMPULSES [J].
Abbas, Said ;
Benchohra, Mouffak ;
Darwish, Mohamed Abdalla .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (01) :172-191
[3]  
Ahmerov R.R., 1992, Measures of Noncompactness and Condensing Operators
[4]  
Baleanu D, 2012, Fractional Calculus: Models and Numerical Methods
[5]  
Bandyopadhyay B, 2015, LECT NOTES ELECTR EN, V317, P1, DOI 10.1007/978-3-319-08621-7
[6]   On Noncompact Fractional Order Differential Inclusions with Generalized Boundary Condition and Impulses in a Banach Space [J].
Benedetti, Irene ;
Obukhovskii, Valeri ;
Taddei, Valentina .
JOURNAL OF FUNCTION SPACES, 2015, 2015
[7]  
Borisovich YG, 2011, INTRO THEORY MULTIVA
[8]  
Anh CT, 2014, FIXED POINT THEOR-RO, V15, P373
[9]  
Deimling K., 1992, Multivalued differential equations, DOI DOI 10.1515/9783110874228
[10]   Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type [J].
Diethelm, Kai .
ANALYSIS OF FRACTIONAL DIFFERENTIAL EQUATIONS: AN APPLICATION-ORIENTED EXPOSITION USING DIFFERENTIAL OPERATORS OF CAPUTO TYPE, 2010, 2004 :3-+