Multiple solutions of nonlinear partial functional differential equations and systems

被引:1
作者
Simon, Laszlo [1 ]
机构
[1] Eotvos Lorand Univ, Pazmany P Setany 1-C, H-1117 Budapest, Hungary
关键词
partial functional differential equations; multiple solutions;
D O I
10.14232/ejqtde.2019.1.21
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We shall consider weak solutions of initial-boundary value problems for semilinear and nonlinear parabolic differential equations with certain nonlocal terms, further, systems of elliptic functional differential equations. We shall prove theorems on the number of solutions and find multiple solutions. These statements are based on arguments for fixed points of some real functions and operators, respectively, and existence-uniqueness theorems on partial differential equations (without functional terms).
引用
收藏
页码:1 / 16
页数:16
相关论文
共 9 条
[1]  
[Anonymous], COLL MATH SOC J BOLY
[2]  
BITSADZE AV, 1969, DOKL AKAD NAUK SSSR+, V185, P739
[3]   On pseudomonotone elliptic operators with functional dependence on unbounded domains [J].
Csirik, Mihaly .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2016, (21) :1-15
[4]  
Lions J L., 1969, Quelques Mthodes de Rsolution des Problmes aux Limites non Linaires
[5]   Multiple solutions of nonlinear elliptic functional differential equations [J].
Simon, Laszlo .
ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2018, (60) :1-9
[6]  
Simon L, 2008, HBK DIFF EQUAT EVOL, V4, P267, DOI 10.1016/S1874-5717(08)00006-6
[7]  
Skubachevskii A. L., 1997, OPERATOR THEORY ADV, V91, DOI [10.1007/978-3-0348-9033-5, DOI 10.1007/978-3-0348-9033-5]
[8]  
Wu J., 1996, Theory and Applications of Partial Function-Differential Equations, DOI [10.1007/978-1-4612-4050-1, DOI 10.1007/978-1-4612-4050-1]
[9]  
Zeidler E., 1990, Nonlinear Functional Analysis and its Applications II/B: Nonlinear Monotone Operators, DOI [10.1007/978-1-4612-0985-0, 10.1007/978-1-4612-0981-2, DOI 10.1007/978-1-4612-0981-2]