Sieve M-estimator for a semi-functional linear model

被引:4
作者
Huang LeLe [1 ]
Wang HuiWen [1 ]
Cui HengJian [2 ]
Wang SiYang [3 ]
机构
[1] Beihang Univ, Sch Econ & Management, Beijing 100191, Peoples R China
[2] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
[3] Cent Univ Finance & Econ, Sch Math & Stat, Beijing 100081, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
functional linear model; sieve estimator; spline; knot number; convergence rate; QUANTILE REGRESSION; PREDICTION;
D O I
10.1007/s11425-015-5040-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose sieve M-estimator for a semi-functional linear model in which the scalar response is explained by a linear operator of functional predictor and smooth functions of some real-valued random variables. Spline estimators of the functional coefficient and the smooth functions are considered, and by selecting appropriate knot numbers the optimal convergence rate and the asymptotic normality can be obtained under some mild conditions. Some simulation results and a real data example are presented to illustrate the performance of our estimation method.
引用
收藏
页码:2421 / 2434
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 2011, Robust Statistics, DOI DOI 10.1002/9780471725254
[2]   Prediction in functional linear regression [J].
Cai, T. Tony ;
Hall, Peter .
ANNALS OF STATISTICS, 2006, 34 (05) :2159-2179
[3]   Minimax and Adaptive Prediction for Functional Linear Regression [J].
Cai, T. Tony ;
Yuan, Ming .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (499) :1201-1216
[4]   Quantile regression when the covariates are functions [J].
Cardot, H ;
Crambes, C ;
Sarda, P .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (07) :841-856
[5]  
Chen XH, 2007, HBK ECON, V2, P5549, DOI 10.1016/S1573-4412(07)06076-X
[6]   SMOOTHING SPLINES ESTIMATORS FOR FUNCTIONAL LINEAR REGRESSION [J].
Crambes, Christophe ;
Kneip, Alois ;
Sarda, Pascal .
ANNALS OF STATISTICS, 2009, 37 (01) :35-72
[7]  
de Boor C, 2001, PRACTICAL GUIDE SPLI
[8]  
Ferraty F., 2006, SPR S STAT
[9]   Methodology and convergence rates for functional linear regression [J].
Hall, Peter ;
Horowitz, Joel L. .
ANNALS OF STATISTICS, 2007, 35 (01) :70-91
[10]   Estimation in a semiparametric model for longitudinal data with unspecified dependence structure [J].
He, XM ;
Zhu, ZY ;
Fung, WK .
BIOMETRIKA, 2002, 89 (03) :579-590