An Optimization Method for Parameters of SVM in Network Intrusion Detection System

被引:8
作者
Yang, Qiuwei [1 ]
Fu, Hongjuan [1 ]
Zhu, Ting [2 ]
机构
[1] Hunan Univ, Dept Comp Sci & Elect Engn, Changsha, Hunan, Peoples R China
[2] Univ Maryland Baltimore Cty, Dept Comp Sci & Elect Engn, Baltimore, MD USA
来源
PROCEEDINGS 12TH ANNUAL INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SENSOR SYSTEMS (DCOSS 2016) | 2016年
关键词
intrusion detection; support vector machines; particle swarm optimization; chaos; inertia weight; CHAOS;
D O I
10.1109/DCOSS.2016.48
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Network intrusion detection based on SVM is the hot topic of network security research, and the existing researches have low detection rate, high false positive rate and other issues. Optimizing particle swarm optimization parameters of SVM is an effective solution, but the PSO algorithm is easy to fall into local optimum and results premature convergence. We propose an improved particle swarm optimization algorithm ICPSO, which use chaos operator ergodicity, randomness, sensitivity to initial conditions and other characteristics and the ICPSO is used to make the chaos into the inertia weight factor parameters and The chaos is applied to the optimization of the RBF kernel function parameter g and the penalty factor C, and to improve the convergence speed and precision of the particle swarm optimization. The experimental results show that: relative to the PSO-SVM algorithm and GA-SVM algorithm, ICPSO-SVM improves the efficiency of intrusion detection, and is an effective intrusion detection model.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 22 条
[1]   Chaos embedded particle swarm optimization algorithms [J].
Alatas, Bilal ;
Akin, Erhan ;
Ozer, A. Bedri .
CHAOS SOLITONS & FRACTALS, 2009, 40 (04) :1715-1734
[2]  
BERGH F, 2006, ANAL PARTICLE SWARM, P118
[3]   A novel chaotic particle swarm optimization approach using Henon map and implicit filtering local search for economic load dispatch [J].
Coelho, Leandro dos Santos ;
Mariani, Viviana Cocco .
CHAOS SOLITONS & FRACTALS, 2009, 39 (02) :510-518
[4]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[5]  
Eberhart R. C., 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), P1927, DOI 10.1109/CEC.1999.785508
[6]   On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on Intrusion Detection Systems [J].
Elhag, Salma ;
Fernandez, Alberto ;
Bawakid, Abdullah ;
Alshomrani, Saleh ;
Herrera, Francisco .
EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (01) :193-202
[7]  
Esmin A. A. A., 2007, 7th International Conference on Hybrid Intelligent Systems, HIS 2007, P340
[8]  
Huang C.-L., 2011, EXPERT SYSTEMS APPL, V31, P231
[9]   A dynamic inertia weight particle swarm optimization algorithm [J].
Jiao, Bin ;
Lian, Zhigang ;
Gu, Xingsheng .
CHAOS SOLITONS & FRACTALS, 2008, 37 (03) :698-705
[10]   Hi-DRA: Intrusion detection for Internet security [J].
Kemmerer, RA ;
Vigna, G .
PROCEEDINGS OF THE IEEE, 2005, 93 (10) :1848-1857