AN ADAPTIVE LEAST-SQUARES FEM FOR LINEAR ELASTICITY WITH OPTIMAL CONVERGENCE RATES

被引:13
作者
Bringmann, P. [1 ]
Carstensen, C. [1 ]
Starke, G. [2 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Univ Duisburg Essen, Dept Math, Thea Leymann Str 9, D-45127 Essen, Germany
关键词
least-squares finite element method; linear; elasticity; adaptive finite element method; optimal convergence rates; separate marking; supercloseness; FINITE-ELEMENT METHODS; MAXWELL EQUATIONS; AXIOMS;
D O I
10.1137/16M1083797
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Adaptive mesh-refining is of particular importance in computational mechanics and established here for the lowest-order locking-free least-squares finite element scheme which solely employs conforming P-1 approximations for the displacement and lowest-order Raviart-Thomas approximations for the stress variables. This forms a competitive discretization in particular in three-dimensional linear elasticity with traction boundary conditions although the stress approximation does not satisfy the symmetry condition exactly. The paper introduces an adaptive mesh-refining algorithm based on separate marking and exact solve with some novel explicit a posteriori error estimator and proves optimal convergence rates. The point is robustness in the sense that the crucial input parameters Theta for the Dorfler marking and kappa for the separate marking as well as the equivalence constants in the asymptotic convergence rates do not degenerate as the Lame parameter lambda tends to infinity.
引用
收藏
页码:428 / 447
页数:20
相关论文
共 28 条
[1]  
[Anonymous], 2007, FINITE ELEMENTE
[2]  
[Anonymous], 1978, STUDIES MATH ITS APP
[3]   Adaptive finite element methods with convergence rates [J].
Binev, P ;
Dahmen, W ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :219-268
[4]   Fast computation in adaptive tree approximation [J].
Binev, P ;
DeVore, R .
NUMERISCHE MATHEMATIK, 2004, 97 (02) :193-217
[5]  
Bochev PB, 2009, APPL MATH SCI, V166, P3, DOI 10.1007/b13382_1
[6]  
Boffi D., 2013, SPRINGER SER COMPUT
[7]   A note on least-squares mixed finite elements in relation to standard and mixed finite elements [J].
Brandts, Jan ;
Chen, Yanping ;
Yang, Julie .
IMA JOURNAL OF NUMERICAL ANALYSIS, 2006, 26 (04) :779-789
[8]  
Brenner S.C., 2008, MATH THEORY FINITE E, V15
[9]   An adaptive least-squares FEM for the Stokes equations with optimal convergence rates [J].
Bringmann, P. ;
Carstensen, C. .
NUMERISCHE MATHEMATIK, 2017, 135 (02) :459-492
[10]   Least-squares methods for linear elasticity [J].
Cai, ZQ ;
Starke, G .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (02) :826-842