Predictive value of quantitative 18F-FDG-PET radiomics analysis in patients with head and neck squamous cell carcinoma

被引:29
作者
Martens, Roland M. [1 ]
Koopman, Thomas [1 ]
Noij, Daniel P. [1 ]
Pfaehler, Elisabeth [2 ]
Ubelhor, Caroline [3 ]
Sharma, Sughandi [1 ]
Vergeer, Marije R. [4 ]
Leemans, C. Rene [5 ]
Hoekstra, Otto S. [1 ]
Yaqub, Maqsood [1 ]
Zwezerijnen, Gerben J. [1 ]
Heymans, Martijn W. [3 ]
Peeters, Carel F. W. [3 ]
de Bree, Remco [6 ]
de Graaf, Pim [1 ]
Castelijns, Jonas A. [1 ]
Boellaard, Ronald [1 ,2 ]
机构
[1] Univ Amsterdam, Med Ctr, Dept Radiol & Nucl Med, De Boelelaan 1117,POB 7057, NL-1007 MB Amsterdam, Netherlands
[2] Univ Groningen, Univ Med Ctr Groningen, Med Imaging Ctr, Dept Nucl Med & Mol Imaging, Groningen, Netherlands
[3] Univ Amsterdam, Med Ctr, Dept Epidemiol & Biostat, De Boelelaan 1117, Amsterdam, Netherlands
[4] Univ Amsterdam, Med Ctr, Dept Radiat Oncol, De Boelelaan 1117, Amsterdam, Netherlands
[5] Univ Amsterdam, Med Ctr, Dept Otolaryngol Head & Neck Surg, De Boelelaan 1117, Amsterdam, Netherlands
[6] Univ Med Ctr Utrecht, Dept Head & Neck Surg Oncol, Utrecht, Netherlands
关键词
Head and Neck Neoplasms; Positron Emission Tomography Computed Tomography; Radiomics; Prognosis; TEXTURE ANALYSIS; CANCER-TREATMENT; PET; CT; SURVIVAL; FEATURES; VOLUME; PERFORMANCE; VALIDATION; PATTERNS;
D O I
10.1186/s13550-020-00686-2
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Radiomics is aimed at image-based tumor phenotyping, enabling application within clinical-decision-support-systems to improve diagnostic accuracy and allow for personalized treatment. The purpose was to identify predictive 18-fluor-fluoro-2-deoxyglucose (F-18-FDG) positron-emission tomography (PET) radiomic features to predict recurrence, distant metastasis, and overall survival in patients with head and neck squamous cell carcinoma treated with chemoradiotherapy. Methods: Between 2012 and 2018, 103 retrospectively (training cohort) and 71 consecutively included patients (validation cohort) underwent(18)F-FDG-PET/CT imaging. The 434 extracted radiomic features were subjected, after redundancy filtering, to a projection resulting in outcome-independent meta-features (factors). Correlations between clinical, first-order(18)F-FDG-PET parameters (e.g., SUVmean), and factors were assessed. Factors were combined with(18)F-FDG-PET and clinical parameters in a multivariable survival regression and validated. A clinically applicable risk-stratification was constructed for patients' outcome. Results: Based on 124 retained radiomic features from 103 patients, 8 factors were constructed. Recurrence prediction was significantly most accurate by combining HPV-status, SUVmean, SUVpeak, factor 3 (histogram gradient and long-run-low-grey-level-emphasis), factor 4 (volume-difference, coarseness, and grey-level-non-uniformity), and factor 6 (histogram variation coefficient) (CI = 0.645). Distant metastasis prediction was most accurate assessing metabolic-active tumor volume (MATV)(CI = 0.627). Overall survival prediction was most accurate using HPV-status, SUVmean, SUVmax, factor 1 (least-axis-length, non-uniformity, high-dependence-of-high grey-levels), and factor 5 (aspherity, major-axis-length, inversed-compactness and, inversed-flatness) (CI = 0.764). Conclusions: Combining HPV-status, first-order(18)F-FDG-PET parameters, and complementary radiomic factors was most accurate for time-to-event prediction. Predictive phenotype-specific tumor characteristics and interactions might be captured and retained using radiomic factors, which allows for personalized risk stratification and optimizing personalized cancer care.
引用
收藏
页数:15
相关论文
共 57 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0 [J].
Boellaard, Ronald ;
Delgado-Bolton, Roberto ;
Oyen, Wim J. G. ;
Giammarile, Francesco ;
Tatsch, Klaus ;
Eschner, Wolfgang ;
Verzijlbergen, Fred J. ;
Barrington, Sally F. ;
Pike, Lucy C. ;
Weber, Wolfgang A. ;
Stroobants, Sigrid ;
Delbeke, Dominique ;
Donohoe, Kevin J. ;
Holbrook, Scott ;
Graham, Michael M. ;
Testanera, Giorgio ;
Hoekstra, Otto S. ;
Zijlstra, Josee ;
Visser, Eric ;
Hoekstra, Corneline J. ;
Pruim, Jan ;
Willemsen, Antoon ;
Arends, Bertjan ;
Kotzerke, Joerg ;
Bockisch, Andreas ;
Beyer, Thomas ;
Chiti, Arturo ;
Krause, Bernd J. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (02) :328-354
[3]   Comparison of PET and CT radiomics for prediction of local tumor control in head and neck squamous cell carcinoma [J].
Bogowicz, Marta ;
Riesterer, Oliver ;
Stark, Luisa Sabrina ;
Studer, Gabriela ;
Unkelbach, Jan ;
Guckenberger, Matthias ;
Tanadini-Lang, Stephanie .
ACTA ONCOLOGICA, 2017, 56 (11) :1531-1536
[4]   What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and meta-analysis [J].
Bonomo, Pierluigi ;
Merlotti, A. ;
Olmetto, E. ;
Bianchi, A. ;
Desideri, I. ;
Bacigalupo, A. ;
Franco, P. ;
Franzese, C. ;
Orlandi, E. ;
Livi, L. ;
Caini, S. .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2018, 45 (12) :2122-2138
[5]   Patterns of failure, prognostic factors and survival in locoregionally advanced head and neck cancer treated with concomitant chemoradiotherapy: a 9-year, 337-patient, multi-institutional experience [J].
Brockstein, B ;
Haraf, DJ ;
Rademaker, AW ;
Kies, MS ;
Stenson, KM ;
Rosen, F ;
Mittal, BB ;
Pelzer, H ;
Fung, BB ;
Witt, ME ;
Wenig, B ;
Portugal, L ;
Weichselbaum, RW ;
Vokes, EE .
ANNALS OF ONCOLOGY, 2004, 15 (08) :1179-1186
[6]   Cross-validation methods [J].
Browne, MW .
JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2000, 44 (01) :108-132
[7]   Introduction to Uncertainty and Sensitivity Analysis in Archaeological Computational Modeling [J].
Burg, Marieka Brouwer ;
Peeters, Hans ;
Lovis, William A. .
UNCERTAINTY AND SENSITIVITY ANALYSIS IN ARCHAEOLOGICAL COMPUTATIONAL MODELING, 2016, :1-20
[8]   Tumor Texture Analysis in PET: Where Do We Stand? [J].
Buvat, Irene ;
Orlhac, Fanny ;
Soussan, Michael .
JOURNAL OF NUCLEAR MEDICINE, 2015, 56 (11) :1642-1644
[9]   Effects of Image Characteristics on Performance of Tumor Delineation Methods: A Test-Retest Assessment [J].
Cheebsumon, Patsuree ;
van Velden, Floris H. P. ;
Yaqub, Maqsood ;
Frings, Virginie ;
de Langen, Adrianus J. ;
Hoekstra, Otto S. ;
Lammertsma, Adriaan A. ;
Boellaard, Ronald .
JOURNAL OF NUCLEAR MEDICINE, 2011, 52 (10) :1550-1558
[10]   Zone-size nonuniformity of 18F-FDG PET regional textural features predicts survival in patients with oropharyngeal cancer [J].
Cheng, Nai-Ming ;
Fang, Yu-Hua Dean ;
Lee, Li-yu ;
Chang, Joseph Tung-Chieh ;
Tsan, Din-Li ;
Ng, Shu-Hang ;
Wang, Hung-Ming ;
Liao, Chun-Ta ;
Yang, Lan-Yan ;
Hsu, Ching-Han ;
Yen, Tzu-Chen .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2015, 42 (03) :419-428