La0.8Sr1.2CoO4+δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells

被引:32
|
作者
Zhou, Jun [1 ]
Chen, Gang [1 ]
Wu, Kai [1 ]
Cheng, Yonghong [1 ]
机构
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词
Solid oxide fuel cells; Cathode materials; Mixed ionic-electronic conductor; Electrochemical property; TRANSPORT-PROPERTIES; ELECTRICAL-CONDUCTIVITY; OXYGEN REDUCTION; SURFACE EXCHANGE; DIFFUSION; KINETICS; SR; NONSTOICHIOMETRY; PERFORMANCES; CERAMICS;
D O I
10.1016/j.jpowsour.2012.11.110
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
La0.8Sr1.2CoO4+delta (LSCO4) material with K2NiF4-type structure has been synthesized via a citric-nitrate process and characterized. Composite materials La0.8Sr1.2CoO4+delta-Ce0.9Gd0.1O2-delta (CGO) (LSCO4-CGO) have been prepared and evaluated as cathode for intermediate temperature SOFC (IT-SOFC) based on La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolytes. LSCO4 oxide is chemically compatible with CGO and LSGM electrolyte at temperature up to 1000 degrees C. Compared with the pure LSCO4, the optimum composition of LSCO4-35 wt % CGO exhibits better electrochemical activity for oxygen reduction. Also, for LSCO4-35 wt % CGO electrode, SEM results suggest that better microstructure is obtained and the electrode forms good contact with the electrolyte after sintering at 1000 degrees C for 2 h. At 750 degrees C, the polarization resistance of the LSCO4-35 wt % CGO composite cathode is about 0.21 Omega cm(2) in air. A cell with a 1.2 mm thick LSGM electrolyte, NiO as anode, and LSCO4-35 wt % CGO as cathode displays a maximum power density of 515 mW cm(-2) at 750 degrees C. These results indicate that LSCO4-CGO composite materials are promising cathode candidates for intermediate-temperature solid oxide fuel cells with LSGM electrolyte. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 337
页数:6
相关论文
共 50 条
  • [21] Composite cathode La0.6Sr0.4Co0.2Fe0.8O3-Sm0.1Ce0.9O1.95-Ag for intermediate-temperature solid oxide fuel cells
    Zhang, JD
    Ji, Y
    Gao, HB
    He, TM
    Liu, J
    JOURNAL OF ALLOYS AND COMPOUNDS, 2005, 395 (1-2) : 322 - 325
  • [22] Promoted CO2-poisoning resistance of La0.8Sr0.2MnO3-δ-coated Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathode for intermediate temperature solid oxide fuel cells
    Qiu, Peng
    Wang, Ao
    Li, Jin
    Li, Zongbao
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Li, Jian
    JOURNAL OF POWER SOURCES, 2016, 327 : 408 - 413
  • [23] Characterization of SrFe0.75Mo0.25O3-δ-La0.9Sr0.1Ga0.8Mg0.2O3-δ composite cathodes prepared by infiltration
    Meng, Xie
    Han, Da
    Wu, Hao
    Li, Junliang
    Zhan, Zhongliang
    JOURNAL OF POWER SOURCES, 2014, 246 : 906 - 911
  • [24] Comparison between La0.9Ba0.1Ga0.8Mg0.2O2.85 and La0.9Sr0.1Gao0.8Mg0.2O2.85 as SOFCs electrolytes
    Yamaji, K
    Horita, T
    Sakai, N
    Yokokawa, H
    SOLID STATE IONICS, 2002, 152 : 517 - 523
  • [25] Enhanced electrochemical performance of solution impregnated La0.8Sr0.2Co0.8Ni0.2O3-δ cathode for intermediate temperature solid oxide fuel cells
    Xu, Xiang
    Wang, Fangzhong
    Liu, Yihui
    Pu, Jian
    Chi, Bo
    Jian, Li
    JOURNAL OF POWER SOURCES, 2011, 196 (22) : 9365 - 9368
  • [26] A comparison study of chromium deposition and poisoning on La0.8Sr0.2Ga0.8Mg0.2O3-δ and Gd0.1Ce0.9O2-δ electrolytes of solid oxide fuel cells
    Zhao, Ling
    Cui, Yuexiao
    Gui, Liangqi
    Li, Geng
    He, Beibei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 688 : 376 - 381
  • [27] Application of high velocity oxygen fuel flame (HVOF) spraying to fabrication of La0.8Sr0.2Ga0.8Mg0.2O3 electrolyte for solid oxide fuel cells
    Zhang, Shan-Lin
    Li, Cheng-Xin
    Li, Chang-Jiu
    Yang, Guan-Jun
    Liu, Meilin
    JOURNAL OF POWER SOURCES, 2016, 301 : 62 - 71
  • [28] Characterization of the 75% Gd0.8Sr0.2CoO3-δ/25% Ce0.9Gd0.1O2-δ composite cathode system for use in intermediate temperature solid oxide fuel cells
    Kilius, L. B.
    Krstic, V.
    JOURNAL OF POWER SOURCES, 2009, 194 (02) : 690 - 696
  • [29] Characterization and optimization of La0.8Sr0.2Sc0.1Mn0.9O3-δ-based composite electrodes for intermediate-temperature solid-oxide fuel cells
    Zheng, Yao
    Ran, Ran
    Gu, Hongxia
    Cai, Rui
    Shao, Zongping
    JOURNAL OF POWER SOURCES, 2008, 185 (02) : 641 - 648
  • [30] La0.6Sr0.4Co0.2Fe0.8O3 as the anode and cathode for intermediate temperature solid oxide fuel cells
    Hartley, A
    Sahibzada, M
    Weston, M
    Metcalfe, IS
    Mantzavinos, D
    CATALYSIS TODAY, 2000, 55 (1-2) : 197 - 204