共 50 条
La0.8Sr1.2CoO4+δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3-δ electrolyte for intermediate temperature solid oxide fuel cells
被引:32
|作者:
Zhou, Jun
[1
]
Chen, Gang
[1
]
Wu, Kai
[1
]
Cheng, Yonghong
[1
]
机构:
[1] Xi An Jiao Tong Univ, State Key Lab Elect Insulat & Power Equipment, Xian 710049, Peoples R China
关键词:
Solid oxide fuel cells;
Cathode materials;
Mixed ionic-electronic conductor;
Electrochemical property;
TRANSPORT-PROPERTIES;
ELECTRICAL-CONDUCTIVITY;
OXYGEN REDUCTION;
SURFACE EXCHANGE;
DIFFUSION;
KINETICS;
SR;
NONSTOICHIOMETRY;
PERFORMANCES;
CERAMICS;
D O I:
10.1016/j.jpowsour.2012.11.110
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
La0.8Sr1.2CoO4+delta (LSCO4) material with K2NiF4-type structure has been synthesized via a citric-nitrate process and characterized. Composite materials La0.8Sr1.2CoO4+delta-Ce0.9Gd0.1O2-delta (CGO) (LSCO4-CGO) have been prepared and evaluated as cathode for intermediate temperature SOFC (IT-SOFC) based on La0.9Sr0.1Ga0.8Mg0.2O3-delta (LSGM) electrolytes. LSCO4 oxide is chemically compatible with CGO and LSGM electrolyte at temperature up to 1000 degrees C. Compared with the pure LSCO4, the optimum composition of LSCO4-35 wt % CGO exhibits better electrochemical activity for oxygen reduction. Also, for LSCO4-35 wt % CGO electrode, SEM results suggest that better microstructure is obtained and the electrode forms good contact with the electrolyte after sintering at 1000 degrees C for 2 h. At 750 degrees C, the polarization resistance of the LSCO4-35 wt % CGO composite cathode is about 0.21 Omega cm(2) in air. A cell with a 1.2 mm thick LSGM electrolyte, NiO as anode, and LSCO4-35 wt % CGO as cathode displays a maximum power density of 515 mW cm(-2) at 750 degrees C. These results indicate that LSCO4-CGO composite materials are promising cathode candidates for intermediate-temperature solid oxide fuel cells with LSGM electrolyte. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:332 / 337
页数:6
相关论文