Small convex quadrangulations of point sets

被引:0
作者
Bremner, D [1 ]
Hurtado, F
Ramaswami, S
Sacristán, V
机构
[1] Univ New Brunswick, Fac Comp Sci, Fredericton, NB E3B 5A3, Canada
[2] Univ Politecn Catalunya, Dept Matemat Aplicada 2, Barcelona, Spain
[3] Rutgers State Univ, Dept Comp Sci, Camden, NJ 08102 USA
来源
ALGORITHMS AND COMPUTATION, PROCEEDINGS | 2001年 / 2223卷
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we give upper and lower bounds on the number of Steiner points required to construct a strictly convex quadrilateral mesh for a planar point set. In particular, we show that 3[n/2] internal Steiner points are always sufficient for a convex quadrangulation of n points in the plane. Furthermore, for any given n greater than or equal to 4, there are point sets for which [n-3/2] -1 Steiner points are necessary for a convex quadrangulation.
引用
收藏
页码:623 / 635
页数:13
相关论文
共 22 条
[1]   A QUADRILATERAL FINITE-ELEMENT INCLUDING VERTEX ROTATIONS FOR PLANE ELASTICITY ANALYSIS [J].
ALLMAN, DJ .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1988, 26 (03) :717-730
[2]  
ARKIN E, 1994, LECT NOTES COMPUTER, V855, P36
[3]  
Benzley S.E., 1995, P 4 INT MESH ROUNDT, VVol. 17, P179
[4]   LINEAR-SIZE NONOBTUSE TRIANGULATION OF POLYGONS [J].
BERN, M ;
MITCHELL, S ;
RUPPERT, J .
DISCRETE & COMPUTATIONAL GEOMETRY, 1995, 14 (04) :411-428
[5]  
Bern M., 1997, P 6 INT MESH ROUNDT, P7
[6]   POLYNOMIAL-SIZE NONOBTUSE TRIANGULATION OF POLYGONS [J].
Bern, Marshall ;
Eppstein, David .
INTERNATIONAL JOURNAL OF COMPUTATIONAL GEOMETRY & APPLICATIONS, 1992, 2 (03) :241-255
[7]   Characterizing and efficiently computing quadrangulations of planar point sets [J].
Bose, P ;
Toussaint, G .
COMPUTER AIDED GEOMETRIC DESIGN, 1997, 14 (08) :763-785
[8]  
BOSE P, 1996, 12 EUR WORKSH COMP G
[9]   STATIONING GUARDS IN RECTILINEAR ART GALLERIES [J].
EDELSBRUNNER, H ;
OROURKE, J ;
WELZL, E .
COMPUTER VISION GRAPHICS AND IMAGE PROCESSING, 1984, 27 (02) :167-176
[10]  
Eppstein D., 1996, Proceedings of the Twelfth Annual Symposium on Computational Geometry, FCRC '96, P58, DOI 10.1145/237218.237237