Lithium Insertion into Anatase Nanotubes

被引:110
作者
Gentili, V. [1 ]
Brutti, S. [2 ]
Hardwick, L. J. [3 ]
Armstrong, A. R. [1 ]
Panero, S. [4 ]
Bruce, P. G. [1 ]
机构
[1] Univ St Andrews, EaStCHEM, Sch Chem, St Andrews KY16 9ST, Fife, Scotland
[2] Univ Basilicata, Dipartimento Sci, I-85100 Potenza, Italy
[3] Univ Liverpool, Stephenson Inst Renewable Energy, Dept Chem, Liverpool L69 7ZD, Merseyside, England
[4] Univ Roma La Sapienza, Dipartimento Chim, I-00185 Rome, Italy
基金
英国工程与自然科学研究理事会;
关键词
titanium oxide; nanotubes; lithium insertion mechanism; nanostructured anodes for Li-ion cells; ELECTROCHEMICAL ENERGY-STORAGE; TITANIUM-DIOXIDE; NEGATIVE ELECTRODES; MESOPOROUS ANATASE; TIO2; NANOTUBES; ANODE MATERIAL; ION BATTERIES; PERFORMANCE; INTERCALATION; IMPACT;
D O I
10.1021/cm302912f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Anatase nanotubes were synthesized by a hydrothermal route and characterized by FE-SEM, TEM, XRD, and N-2 adsorption. The optimized synthesis route permits careful control of the crystal structure and morphology of the final product, thus giving the highest phase and morphological purities (>90%) of any anatase nanotubes reported to date. The anatase nanotubes were tested in lithium cells at various current rates and their performances compared with bulk and nanoparticulate anatase. The Li uptake of the nanotubes in lithium cells reaches 0.98 per formula unit. Moreover the nanotubes show better reversibility and cyclability compared to both bulk and nanoparticulate anatase. The excellent rate performance is comparable with the best literature values reported for mesostructured anatase nanopowders. By combining experimental data from neutron diffraction and Raman microscopy the lithium insertion mechanism into the anatase nanotubes was investigated. Ex situ neutron diffraction experiments were carried out on pristine, partially lithiated, and fully lithiated anatase nanotubes. In parallel, the structural changes associated with electrochemical lithium insertion were investigated by in situ Raman microscopy. This analysis suggests a Li-poor tetragonal/orthorhombic/Li-rich tetragonal double phase transition mechanism analogous to that previously observed by Wagemaker et al. for anatase nanoparticles smaller than 7 nm.
引用
收藏
页码:4468 / 4476
页数:9
相关论文
共 56 条
[1]   Nanostructured Anode Material for High-Power Battery System in Electric Vehicles [J].
Amine, Khalil ;
Belharouak, Ilias ;
Chen, Zonghai ;
Tran, Taison ;
Yumoto, Hiroyuki ;
Ota, Naoki ;
Myung, Seung-Taek ;
Sun, Yang-Kook .
ADVANCED MATERIALS, 2010, 22 (28) :3052-3057
[2]   Nanostructured materials for advanced energy conversion and storage devices [J].
Aricò, AS ;
Bruce, P ;
Scrosati, B ;
Tarascon, JM ;
Van Schalkwijk, W .
NATURE MATERIALS, 2005, 4 (05) :366-377
[3]   Lithium Coordination Sites in LixTiO2(B): A Structural and Computational Study [J].
Armstrong, A. Robert ;
Arrouvel, Corinne ;
Gentili, Valentina ;
Parker, Stephen C. ;
Islam, M. Saiful ;
Bruce, Peter G. .
CHEMISTRY OF MATERIALS, 2010, 22 (23) :6426-6432
[4]   TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
Bruce, PG .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (17) :2286-2288
[5]   Lithium-ion intercalation into TiO2-B nanowires [J].
Armstrong, AR ;
Armstrong, G ;
Canales, J ;
García, R ;
Bruce, PG .
ADVANCED MATERIALS, 2005, 17 (07) :862-+
[6]   TiO2(B) nanotubes as negative electrodes for rechargeable lithium batteries [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (03) :A139-A143
[7]   Nanotubes with the TiO2-B structure [J].
Armstrong, G ;
Armstrong, AR ;
Canales, J ;
Bruce, PG .
CHEMICAL COMMUNICATIONS, 2005, (19) :2454-2456
[8]   On the correlation between surface chemistry and performance of graphite negative electrodes for Li ion batteries [J].
Aurbach, D ;
Markovsky, B ;
Weissman, I ;
Levi, E ;
Ein-Eli, Y .
ELECTROCHIMICA ACTA, 1999, 45 (1-2) :67-86
[9]  
Bavykin DV, 2010, RSC NANOSCI NANOTECH, P1
[10]   The Electrochemistry of Nanostructured Titanium Dioxide Electrodes [J].
Berger, Thomas ;
Monllor-Satoca, Damian ;
Jankulovska, Milena ;
Lana-Villarreal, Teresa ;
Gomez, Roberto .
CHEMPHYSCHEM, 2012, 13 (12) :2824-2875