Fast Map-Matching Based on Hidden Markov Model

被引:1
|
作者
Yan, Shenglong [1 ]
Yu, Juan [1 ]
Zhou, Houpan [1 ]
机构
[1] Hangzhou Dianzi Univ, Smart City Res Ctr, Hangzhou, Peoples R China
来源
MOBILE COMPUTING, APPLICATIONS, AND SERVICES, MOBICASE 2019 | 2019年 / 290卷
基金
中国国家自然科学基金;
关键词
Map matching; Efficiency; Trajectory compression; Key points; ALGORITHMS;
D O I
10.1007/978-3-030-28468-8_7
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Map matching is the processing of recognizing the true driving route in the road network according to discrete GPS sampling datas. It is a necessary processing step for many relevant applications such as GPS trajectory data analysis and position analysis. The current map-matching algorithms based on HMM (Hidden Markov model) focus only on the accuracy of the matching rather than efficiency. In this paper, we propose a original method: Instead of focusing on a point-by-point, we consider the trajectory compression method to find the key points in the discrete trajectory, and then search for optimal path through the key points. The experiments are implemented on two sets of real dataset and display that our method significantly improve the efficiency compared with HMM algorithm, while keeping matching accuracy.
引用
收藏
页码:85 / 95
页数:11
相关论文
共 50 条
  • [31] Map-matching methods in agriculture
    Silva, Anibal
    Mendes-Moreira, Joao
    Ferreira, Carlos
    Costa, Nuno
    Dias, Duarte
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2024, 216
  • [32] A Hidden Markov Model-Based Map Matching Algorithm for Low Sampling Rate Trajectory Data
    Hu, Yigong
    Lu, Binbin
    IEEE ACCESS, 2019, 7 : 178235 - 178245
  • [33] Integrity of map-matching algorithms
    Quddus, Mohammed A.
    Ochieng, Washington Y.
    Noland, Robert B.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2006, 14 (04) : 283 - 302
  • [34] Personalized Map-Matching Algorithm Based on Driving Preference
    Gao X.
    Wu Y.-J.
    Guo L.-M.
    Ding Z.-M.
    Chen J.-C.
    Gao, Xu (gaoxu@nfs.iscas.ac.cn), 2018, Chinese Academy of Sciences (29): : 3500 - 3516
  • [35] A framework for parallel map-matching at scale using Spark
    Douglas Alves Peixoto
    Hung Quoc Viet Nguyen
    Bolong Zheng
    Xiaofang Zhou
    Distributed and Parallel Databases, 2019, 37 : 697 - 720
  • [36] SGM: Seed Growing Map-matching with Trajectory Fitting
    Min, Yang
    Chen, Cailian
    Wang, Xiaoyu
    He, Jianping
    Zhang, Yang
    5TH INTERNATIONAL CONFERENCE ON BIG DATA COMPUTING AND COMMUNICATIONS (BIGCOM 2019), 2019, : 204 - 212
  • [37] Map-Matching Using Shortest Paths
    Chambers, Erin
    Fasy, Brittany Terese
    Wang, Yusu
    Wenk, Carola
    PROCEEDINGS OF THE 3RD INTERNATIONAL WORKSHOP ON INTERACTIVE AND SPATIAL COMPUTING (IWISC 18), 2018, : 44 - 51
  • [38] Map-matching Algorithm for Large Databases
    Romon, Sebastien
    Bressaud, Xavier
    Lassarre, Sylvain
    Saint Pierre, Guillaume
    Khoudour, Louahdi
    JOURNAL OF NAVIGATION, 2015, 68 (05) : 971 - 988
  • [39] A framework for parallel map-matching at scale using Spark
    Peixoto, Douglas Alves
    Hung Quoc Viet Nguyen
    Zheng, Bolong
    Zhou, Xiaofang
    DISTRIBUTED AND PARALLEL DATABASES, 2019, 37 (04) : 697 - 720
  • [40] iMatching: An interactive map-matching system
    Ding, Ye
    Zhou, Xibo
    Liao, Qing
    Tan, Haoyu
    Luo, Qiong
    Ni, Lionel M.
    NEUROCOMPUTING, 2021, 444 : 126 - 135