The Role of Grain Size on Deformation of 316H Austenitic Stainless Steel

被引:0
|
作者
Mahalingam, S. [1 ]
Flewitt, P. E. J. [1 ,2 ]
Shterenlikht, A. [3 ]
机构
[1] Univ Bristol, Interface Anal Ctr, Bristol BS2 8BS, Avon, England
[2] Univ Bristol, Sch Phys, HH Wills Phys Lab, Bristol BS8 1TL, Avon, England
[3] Univ Bristol, Dept Mech Engn, Bristol BS2 8BS, Avon, England
来源
ADVANCES IN FRACTURE AND DAMAGE MECHANICS XI | 2013年 / 525-526卷
基金
英国工程与自然科学研究理事会;
关键词
Austenitic stainless steel; grain size; deformation; FE analysis; three point bend; BEHAVIOR;
D O I
10.4028/www.scientific.net/KEM.525-526.201
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
The polycrystalline high purity 316H austenitic stainless steel has been thermo-mechanically treated to produce material with two layers of grain size, one of coarser and the other of finer grains. Small three point bend specimens containing a notch positioned in either the coarser or finer layer have been tested at a constant strain rate and a temperature of -196 degrees C. The results are discussed with respect to the effect of grain size on the underlying deformation between the two layers of different grain size.
引用
收藏
页码:201 / +
页数:2
相关论文
共 50 条
  • [1] Effect of pre-strain on grain size distributions in 316H austenitic stainless steel
    S. Mahalingam
    P. E. J. Flewitt
    J. F. Knott
    Journal of Materials Science, 2012, 47 : 960 - 968
  • [2] Tensile mechanical properties, deformation mechanisms, fatigue behaviour and fatigue life of 316H austenitic stainless steel: Effects of grain size
    Zhao, Lei
    Qi, Xueyan
    Xu, Lianyong
    Han, Yongdian
    Jing, Hongyang
    Song, Kai
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2021, 44 (02) : 533 - 550
  • [3] An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel
    Chen, B.
    Flewitt, P. E. J.
    Smith, D. J.
    Jones, C. P.
    ULTRAMICROSCOPY, 2011, 111 (05) : 309 - 313
  • [4] EFFECT OF PLASTICITY ON CREEP DEFORMATION IN TYPE 316H STAINLESS STEEL
    Al Mamun, Abdullah
    Simpson, Chris
    Erinosho, Tomiwa
    Agius, Dylan
    Reinhard, Christina
    Mostafavi, Mahmoud
    Knowles, David
    PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2019, VOL 6A, 2019,
  • [5] Investigating plastic deformation around a reheat-crack in a 316H austenitic stainless steel weldment by misorientation mapping
    Unnikrishnan, Rahul
    Northover, Shirley M.
    Jazaeri, Hedieh
    Bouchard, P. John
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 3501 - 3507
  • [6] Numerical simulation of grain boundary carbides evolution in 316H stainless steel
    Xiong, Qingrong
    Robson, Joseph D.
    Chang, Litao
    Fellowes, Jonathan W.
    Smith, Mike C.
    JOURNAL OF NUCLEAR MATERIALS, 2018, 508 : 299 - 309
  • [7] Relaxation of residual stresses and grain boundary fracture in 316H stainless steel
    Flewitt, P. E. J.
    Chen, B.
    Smith, D. J.
    STRUCTURAL INTEGRITY AND MATERIALS AGEING IN EXTREME CONDITIONS, 2010, : 41 - 50
  • [8] The role of pressure in carburisation: Crack dynamics in Type 316H austenitic stainless steel under CO2 environments
    Zimina, Mariia
    Warren, Alexander D.
    Coghlan, Lawrence
    Thomas, Peter J.
    Chevalier, Marc
    Flewitt, Peter E. J.
    Martin, Tomas L.
    JOURNAL OF NUCLEAR MATERIALS, 2025, 606
  • [9] The role of ferrite in Type 316H austenitic stainless steels on the susceptibility to creep cavitation
    Warren, A. D.
    Griffiths, I. J.
    Harniman, R. L.
    Flewitt, P. E. J.
    Scott, T. B.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2015, 635 : 59 - 69
  • [10] Critical analysis of the prediction of stress relaxation from forward creep of Type 316H austenitic stainless steel
    Wang, Y. Q.
    Spindler, M. W.
    Truman, C. E.
    Smith, D. J.
    MATERIALS & DESIGN, 2016, 95 : 656 - 668