SOME EXTENSIONS OF THE MEAN CURVATURE FLOW IN RIEMANNIAN MANIFOLDS

被引:1
|
作者
Wu, Jiayong [1 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Shanghai 201306, Peoples R China
关键词
mean curvature flow; Riemannian submanifold; integral curvature; maximal existence time; 1ST SINGULAR TIME; SURFACES;
D O I
10.1016/S0252-9602(12)60203-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a family of smooth immersions of closed hypersurfaces in a locally symmetric Riemannian manifold with bounded geometry, moving by mean curvature flow, we show that at the first finite singular time of mean curvature flow, certain subcritical quantities concerning the second fundamental form blow up. This result not only generalizes a result of Le-Sesum and Xu-Ye-Zhao, but also extends the latest work of Le in the Euclidean case.
引用
收藏
页码:171 / 186
页数:16
相关论文
共 50 条
  • [41] ε0-Regularity for Mean Curvature Flow from Surface to Flat Riemannian Manifold
    Han, Xiao Li
    Sun, Jun
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2012, 28 (07) : 1475 - 1490
  • [42] Hyper-Lagrangian submanifolds of Hyperkähler manifolds and mean curvature flow
    Naichung Conan Leung
    Tom Y. H. Wan
    The Journal of Geometric Analysis, 2007, 17 : 343 - 364
  • [43] UNIQUENESS OF VISCOSITY MEAN CURVATURE FLOW SOLUTION IN TWO SUB-RIEMANNIAN STRUCTURES
    Baspinar, E.
    Citti, G.
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2633 - 2659
  • [44] Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products
    Casteras, Jean-Baptiste
    Heinonen, Esko
    Holopainen, Ilkka
    De Lira, Jorge H.
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2022, 10 (01): : 31 - 39
  • [45] ɛ0-regularity for mean curvature flow from surface to flat Riemannian manifold
    Xiao Li Han
    Jun Sun
    Acta Mathematica Sinica, English Series, 2012, 28 : 1475 - 1490
  • [46] Mean curvature flow of spacelike graphs
    Li, Guanghan
    Salavessa, Isabel M. C.
    MATHEMATISCHE ZEITSCHRIFT, 2011, 269 (3-4) : 697 - 719
  • [47] Mean curvature flow with a constant forcing
    Liu, Zuhan
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03): : 621 - 649
  • [48] Some algorithms for the mean curvature flow under topological changes
    Arthur Bousquet
    Yukun Li
    Guanqian Wang
    Computational and Applied Mathematics, 2021, 40
  • [49] MEAN CURVATURE FLOW
    Colding, Tobias Holck
    Minicozzi, William P., II
    Pedersen, Erik Kjaer
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2015, 52 (02) : 297 - 333
  • [50] Some algorithms for the mean curvature flow under topological changes
    Bousquet, Arthur
    Li, Yukun
    Wang, Guanqian
    COMPUTATIONAL & APPLIED MATHEMATICS, 2021, 40 (04)