APPROXIMATING PHYSICAL INVARIANT MEASURES OF MIXING DYNAMICAL SYSTEMS IN HIGHER DIMENSIONS

被引:39
作者
Froyland, Gary [1 ]
机构
[1] Univ Western Australia, Dept Math, Nedlands, WA 6907, Australia
基金
澳大利亚研究理事会;
关键词
Invariant measure; mixing dynamical systems; Perron-Frobenius operator; Ulam approximation;
D O I
10.1016/S0362-546X(97)00527-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:831 / 860
页数:30
相关论文
共 26 条
[1]  
[Anonymous], 1993, MARKOV CHAINS STOCHA
[2]  
Bowen R., 1975, LECT NOTES MATH, V470
[3]  
BOYARSKY A, 1981, ADV APPL MATH, V2, P284
[4]  
Conway JB., 1990, COURSE FUNCTIONAL AN
[5]   THE PROJECTION METHOD FOR COMPUTING MULTIDIMENSIONAL ABSOLUTELY CONTINUOUS INVARIANT-MEASURES [J].
DING, J ;
ZHOU, AH .
JOURNAL OF STATISTICAL PHYSICS, 1994, 77 (3-4) :899-908
[6]  
Ding Jiu, 1995, NONLINEAR ANAL, V25, P399
[7]   CONSTRUCTING INVARIANT-MEASURES FROM DATA [J].
FROYLAND, G ;
JUDD, K ;
MEES, AI ;
WATSON, D ;
MURAO, K .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (04) :1181-1192
[8]  
Froyland G., 1995, RANDOM COMPUT DYN, V3, P251
[9]  
Has'minskii R. Z., 1963, THEOR PROBAB APPL, V8, P1, DOI DOI 10.1137/1108001
[10]   PERTURBATION BOUNDS FOR THE STATIONARY PROBABILITIES OF A FINITE MARKOV-CHAIN [J].
HAVIV, M ;
VANDERHEYDEN, L .
ADVANCES IN APPLIED PROBABILITY, 1984, 16 (04) :804-818