Nanogenerator as self-powered vibration sensor

被引:114
|
作者
Yu, Aifang [1 ]
Jiang, Peng [1 ]
Wang, Zhong Lin [1 ,2 ]
机构
[1] Natl Ctr Nanosci & Technol, Beijing 100190, Peoples R China
[2] Georgia Inst Technol, Sch Mat Sci & Engn, Atlanta, GA 30332 USA
关键词
Self-powering; Nanogenerator; Vibration sensor; ZnO; ENERGY; ARRAYS; SYSTEM;
D O I
10.1016/j.nanoen.2011.12.006
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Vibration is one of the most popular phenomena that exists in our daily life. Detection of mechanical vibration usually uses laser technology. Here, we demonstrated the first application of a piezoelectric nanogenerator (NG) as a self-powered sensor for detecting the vibration status of a cantilever. By attaching a NG at the surface of a cantilever near the fixed end, the resonance frequency and amplitude damping have been quantified using the output voltage of the NG without a power source. This study proves another exciting application of NG in the self-powered vibration detection systems. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:418 / 423
页数:6
相关论文
共 50 条
  • [21] Functional gradient piezoelectric composite nanogenerator for self-powered touch sensor
    Shi, Xiaoquan
    Sun, Yazhou
    Tian, Haiying
    Li, Dekai
    Liu, Haitao
    PHYSICA SCRIPTA, 2023, 98 (12)
  • [22] Triboelectric nanogenerator as self-powered impact force sensor for falling object
    Aminullah
    Kasi, Ajab Khan
    Kasi, Jafar Khan
    Uddin, Moiz
    Bokhari, Muzamil
    CURRENT APPLIED PHYSICS, 2020, 20 (01) : 137 - 144
  • [23] Self-Powered Sensor Based on Triboelectric Nanogenerator for Landslide Displacement Measurement
    Chen, Jinguo
    Zou, Hao
    Pan, Guangzhi
    Mao, Shuai
    Chen, Bing
    Wu, Chuan
    JOURNAL OF SENSORS, 2024, 2024
  • [24] Sustainable oscillating triboelectric nanogenerator as omnidirectional self-powered impact sensor
    Heo, Deokjae
    Kim, Taehun
    Yong, Hyungseok
    Yoo, Kyung Tak
    Lee, Sangmin
    NANO ENERGY, 2018, 50 : 1 - 8
  • [25] A Self-Powered Multifunctional Sensor for Downhole Motor Based on Triboelectric Nanogenerator
    Xu, Jie
    Wang, Yu
    Kong, Lingrong
    Wu, Chuan
    Su, Shida
    Rong, Heqi
    IEEE SENSORS JOURNAL, 2023, 23 (08) : 8252 - 8260
  • [26] Self-powered vibration sensor based on the coupling of dual-mode triboelectric nanogenerator and non-contact electromagnetic generator
    Gao, Xiangming
    Huang, Mingkun
    Zou, Gang
    Li, Xingyun
    Wang, Yongju
    NANO ENERGY, 2023, 111
  • [27] A Self-Powered and Highly Accurate Vibration Sensor Based on Bouncing-Ball Triboelectric Nanogenerator for Intelligent Ship Machinery Monitoring
    Du, Taili
    Zuo, Xusheng
    Dong, Fangyang
    Li, Shunqi
    Mtui, Anaeli Elibariki
    Zou, Yongjiu
    Zhang, Peng
    Zhao, Junhao
    Zhang, Yuewen
    Sun, Peiting
    Xu, Minyi
    MICROMACHINES, 2021, 12 (02)
  • [28] A Self-Powered Vector Angle/Displacement Sensor Based on Triboelectric Nanogenerator
    Li, Chengyu
    Wang, Ziming
    Shu, Sheng
    Tang, Wei
    MICROMACHINES, 2021, 12 (03) : 1 - 10
  • [29] A fully soft, self-powered vibration sensor by laser direct writing
    Luo, Huayu
    Lu, Yuyao
    Xu, Yuhong
    Yang, Geng
    Cui, Songya
    Han, Dong
    Zhou, Qitao
    Ouyang, Xiaoping
    Yang, Huayong
    Cheng, Tinghai
    Xu, Kaichen
    NANO ENERGY, 2022, 103
  • [30] Airflow-Induced Triboelectric Nanogenerator as a Self-Powered Sensor for Detecting Humidity and Airflow Rate
    Guo, Hengyu
    Chen, Jie
    Tian, Li
    Leng, Qiang
    Xi, Yi
    Hu, Chenguo
    ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (19) : 17184 - 17189