Pseudomorphic growth and strain relaxation of α-Zn3P2 on GaAs(001) by molecular beam epitaxy

被引:25
作者
Bosco, Jeffrey P. [1 ]
Kimball, Gregory M. [1 ]
Lewis, Nathan S. [1 ]
Atwater, Harry A. [1 ]
机构
[1] CALTECH, Watson Lab & Noyes Lab, Pasadena, CA 91125 USA
关键词
Pseudomorphic growth; X-ray diffraction; Molecular beam epitaxy; Phosphides; Solar cells; ZN3P2; SINGLE-CRYSTALS; ZINC PHOSPHIDE; ATOMIC-HYDROGEN; ELECTRICAL-PROPERTIES; TRANSPORT-PROPERTIES; SOLAR-CELLS; THIN-FILMS; TEMPERATURE; EPILAYERS; DEPOSITION;
D O I
10.1016/j.jcrysgro.2012.10.054
中图分类号
O7 [晶体学];
学科分类号
0702 ; 070205 ; 0703 ; 080501 ;
摘要
Tetragonal zinc phosphide (alpha-Zn3P2) was grown pseudomorphically, by compound-source molecular-beam epitaxy on GaAs(001). The films grew coherently strained, with epitaxial relationships of Zn3P2||(004) GaAs(002) and Zn3P2(202) GaAs(1 (1) under bar1). Partial relaxation of the Zn3P2 lattice was observed for films that were > 150 nm in thickness. Van der Pauw and Hall effect measurements indicated that the films were intrinsically p-type, presumably due to the incorporation of phosphorus interstitials. The carrier mobilities in strained films ( > 40 cm(2) V-1 s(-1)) were comparable to the carrier mobilities that have been reported for bulk Zn3P2 single crystals. The carrier densities and mobilities of holes decreased significantly upon film relaxation, consistent with the evolution of compensating dislocations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:205 / 210
页数:6
相关论文
共 50 条
  • [21] Metalorganic molecular beam epitaxy of GaNAs alloys on (001)GaAs
    Uesugi, K
    Suemune, I
    JOURNAL OF CRYSTAL GROWTH, 1998, 189 : 490 - 495
  • [22] High Mobility Cd3As2(112) on GaAs(001) Substrates Grown via Molecular Beam Epitaxy
    Rice, Anthony D.
    Nelson, Jocienne
    Norman, Andrew G.
    Walker, Patrick
    Alberi, Kirstin
    ACS APPLIED ELECTRONIC MATERIALS, 2022, 4 (02) : 729 - 734
  • [23] Strain relaxation and compositional separation during growth of InGaAs/GaAs(001)
    Deki, Ryota
    Sasaki, Takuo
    Takahasi, Masamitu
    JOURNAL OF CRYSTAL GROWTH, 2017, 468 : 241 - 244
  • [24] Structure of Zn3P2
    Zanin, IE
    Aleinikova, KB
    Afanasiev, MM
    Antipin, MY
    JOURNAL OF STRUCTURAL CHEMISTRY, 2004, 45 (05) : 844 - 848
  • [25] Growth of InGaAs/GaNAs strain-compensated quantum dot superlattice on GaAs (311)B by molecular beam epitaxy
    Oshima, Ryuji
    Shoji, Yasushi
    Takata, Ayami
    Okada, Yoshitaka
    JOURNAL OF CRYSTAL GROWTH, 2009, 311 (07) : 1770 - 1773
  • [26] Structure of Zn3P2
    I. E. Zanin
    K. B. Aleinikova
    M. M. Afanasiev
    M. Yu. Antipin
    Journal of Structural Chemistry, 2004, 45 : 844 - 848
  • [27] Epitaxial growth of Co2FeSi/MgO/GaAs(001) heterostructures using molecular beam epitaxy
    Hoffmann, G.
    Jenichen, B.
    Herfort, J.
    JOURNAL OF CRYSTAL GROWTH, 2019, 512 : 194 - 197
  • [28] Molecular beam epitaxy of p-hexaphenyl on GaAs(111)
    Resel, R
    Erlacher, K
    Müller, B
    Thierry, A
    Lotz, B
    Kuhlmann, T
    Lischka, K
    Leising, G
    SURFACE AND INTERFACE ANALYSIS, 2000, 30 (01) : 518 - 521
  • [29] Molecular beam epitaxy growth of GaAs on an offcut Ge substrate
    He Ji-Fang
    Niu Zhi-Chuan
    Chang Xiu-Ying
    Ni Hai-Qiao
    Zhu Yan
    Li Mi-Feng
    Shang Xiang-Jun
    CHINESE PHYSICS B, 2011, 20 (01)
  • [30] ErAsSb nanoparticle growth on GaAs surface by molecular beam epitaxy
    Zhang, Yuanchang
    Eyink, Kurt G.
    Peoples, Joseph
    Mahalingam, Krishnamurthy
    Hill, Madelyn
    Grazulis, Larry
    JOURNAL OF CRYSTAL GROWTH, 2016, 435 : 62 - 67