2D and 3D imaging of fatigue failure mechanisms of 3D woven composites

被引:99
|
作者
Yu, B. [1 ]
Bradley, R. S. [1 ]
Soutis, C. [2 ]
Hogg, P. J. [3 ]
Withers, P. J. [1 ]
机构
[1] Univ Manchester, Sch Mat, Henry Moseley Xray Imaging Facil, Manchester M13 9PL, Lancs, England
[2] Univ Manchester, Aerosp Res Inst, Manchester M13 9PL, Lancs, England
[3] Univ London, Royal Holloway, Egham TW20 0EX, Surrey, England
基金
英国工程与自然科学研究理事会;
关键词
Debonding; Microstructures; Transverse cracking; Damage mechanics; RESOLUTION COMPUTED-TOMOGRAPHY; X-RAY TOMOGRAPHY; TENSILE PROPERTIES; TOUGHNESS PROPERTIES; MATRIX COMPOSITES; ORTHOGONAL WEAVE; DAMAGE; BEHAVIOR; MICROTOMOGRAPHY; CRACKING;
D O I
10.1016/j.compositesa.2015.06.013
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A detailed investigation of the failure mechanisms for angle-interlocked (AI) and modified layer-to-layer (MLL) three dimensional (3D) woven composites under tension-tension (T-T) fatigue loading has been conducted using surface optical microscopy, cross-sectional SEM imaging, and non-destructive X-ray computed tomography (CT). X-ray microCT has revealed how cracks including surface matrix cracks, transverse matrix cracks, fibre/matrix interfacial debonding or delamination develop, and has delineated the complex 3D morphology of these cracks in relation to fibre architecture. For both weaves examined, transverse cracks soon become uniformly distributed in the weft yarns. A higher crack density was found in the Al composite than the MLL composite. Transverse cracking initiates in the fibre rich regions of weft yarns rather than the resin rich regions. Delaminations in the failed MLL specimen were more extensive than the Al specimen. It is suggested that for the MLL composite that debonding between the binder yarns and surrounding material is the predominant damage mechanism. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:37 / 49
页数:13
相关论文
共 50 条
  • [31] Experimental investigation on response and failure modes of 2D and 3D woven composites under low velocity impact
    Behzad Kazemianfar
    Meysam Esmaeeli
    Mohammad Rahim Nami
    Journal of Materials Science, 2020, 55 : 1069 - 1091
  • [32] Evolution of failure mechanisms in 2D and 3D woven composite systems under quasi-static perforation
    Baucom, JN
    Zikry, MA
    JOURNAL OF COMPOSITE MATERIALS, 2003, 37 (18) : 1651 - 1674
  • [33] A mesoscale fatigue progressive damage model for 3D woven composites
    Guo, Junhua
    Wen, Weidong
    Zhang, Hongjian
    Cui, Haitao
    INTERNATIONAL JOURNAL OF FATIGUE, 2021, 152
  • [34] The fatigue behaviour and damage development of 3D woven sandwich composites
    Judawisastra, H
    Ivens, J
    Verpoest, I
    COMPOSITE STRUCTURES, 1998, 43 (01) : 35 - 45
  • [35] Tension-compression fatigue behavior of 3D woven composites
    Yao Siyuan
    Chen Xiuhua
    39TH RISO INTERNATIONAL SYMPOSIUM ON MATERIALS SCIENCE: FATIGUE OF COMPOSITE MATERIALS: MICROSTRUCTURE, MECHANICS AND METHODS, 2018, 2018, 388
  • [36] 3D Ultrasound Characterization of Woven Composites
    Tayong, Rostand B.
    Mienczakowski, Martin J.
    Smith, Robert A.
    44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOL 37, 2018, 1949
  • [37] Review: 3D woven honeycomb composites
    Lekhani Tripathi
    B. K. Behera
    Journal of Materials Science, 2021, 56 : 15609 - 15652
  • [38] Review: 3D woven honeycomb composites
    Tripathi, Lekhani
    Behera, B. K.
    JOURNAL OF MATERIALS SCIENCE, 2021, 56 (28) : 15609 - 15652
  • [39] THE MACROSCOPIC ELASTICITY OF 3D WOVEN COMPOSITES
    COX, BN
    DADKHAH, MS
    JOURNAL OF COMPOSITE MATERIALS, 1995, 29 (06) : 785 - 819
  • [40] Mechanical behavior of 3D woven composites
    Behera, B. K.
    Dash, B. P.
    MATERIALS & DESIGN, 2015, 67 : 261 - 271