CO2 adsorption on chemically modified activated carbon

被引:99
|
作者
Caglayan, Burcu Selen [1 ,2 ]
Aksoylu, A. Erhan [1 ]
机构
[1] Bogazici Univ, Dept Chem Engn, TR-34342 Istanbul, Turkey
[2] Bogazici Univ, Adv Technol R&D Ctr, TR-34342 Istanbul, Turkey
关键词
CO2; adsorption; removal; Activated carbon; Surface modification; DRIFTS; SURFACE-CHEMISTRY; HIGH-TEMPERATURE; HYDROGEN PROX; OXIDATION; DIOXIDE; CAPTURE; ENHANCEMENT; REMOVAL; CATALYSTS; ZEOLITES;
D O I
10.1016/j.jhazmat.2013.02.028
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 adsorption capacity of a commercial activated carbon was improved by using HNO3 oxidation, air oxidation, alkali impregnation and heat treatment under helium gas atmosphere. The surface functional groups produced were investigated by diffuse reflectance infrared Fourier transform spectrometer (DRIFTS). CO2 adsorption capacities of the samples were determined by gravimetric analyses for 25-200 degrees C temperature range. DRIFTS studies revealed the formation of carboxylic acid groups on the HNO3 oxidized adsorbents. Increased aromatization and uniform distribution of the Na particles were observed on the samples prepared by Na2CO3 impregnation onto HNO3 oxidized AC support. The adsorption capacities of the nonimpregnated samples were increased by high temperature helium treatments or by increasing the adsorption temperature; both leading to decomposition of surface oxygen groups, forming sites that can easily adsorb CO2. The adsorption capacity loss due to cyclic adsorption/desorption procedures was overcome with further surface stabilization of Na2CO3 modified samples with high temperature He treatments. With Na2CO3 impregnation the mass uptakes of the adsorbents at 20 bars and 25 degrees C were improved by 8 and 7 folds and at 1 bar were increased 15 and 16 folds, on the average, compared to their air oxidized and nitric acid oxidized supports, respectively. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:19 / 28
页数:10
相关论文
共 50 条
  • [21] CO2 adsorption on binderless activated carbon monoliths
    Diana Paola Vargas
    Liliana Giraldo
    Joaquín Silvestre-Albero
    Juan Carlos Moreno-Piraján
    Adsorption, 2011, 17 : 497 - 504
  • [22] CO2 adsorption on binderless activated carbon monoliths
    Paola Vargas, Diana
    Giraldo, Liliana
    Silvestre-Albero, Joaquin
    Carlos Moreno-Pirajan, Juan
    ADSORPTION-JOURNAL OF THE INTERNATIONAL ADSORPTION SOCIETY, 2011, 17 (03): : 497 - 504
  • [23] Adsorption CO2 on activated carbon with surface modification
    Lin, Cheng
    Zhang, Huiyun
    Lin, Xiaoying
    Feng, Yunfei
    ADVANCES IN CHEMICAL, MATERIAL AND METALLURGICAL ENGINEERING, PTS 1-5, 2013, 634-638 : 746 - 750
  • [24] Enhanced adsorption of As(III) on chemically modified activated carbon fibers
    Jie Shi
    Zhiwei Zhao
    Jihao Zhou
    Tianyi Sun
    Zhijie Liang
    Applied Water Science, 2019, 9
  • [25] Enhanced adsorption of As(III) on chemically modified activated carbon fibers
    Shi, Jie
    Zhao, Zhiwei
    Zhou, Jihao
    Sun, Tianyi
    Liang, Zhijie
    APPLIED WATER SCIENCE, 2019, 9 (03)
  • [26] Enhancement of CO2 adsorption performance with the chitosan-modified activated carbon by different methods
    Chung, Chin-Chun
    Chen, Hua-Wei
    Wu, Hung-Ta
    CHEMICAL ENGINEERING COMMUNICATIONS, 2024, 211 (07) : 1099 - 1115
  • [27] Facile fabrication of copper oxide modified activated carbon composite for efficient CO2 adsorption
    Chen, Guanghui
    Wang, Fei
    Wang, Shougui
    Ji, Cailin
    Wang, Weiwen
    Dong, Jipeng
    Gao, Fei
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2021, 38 (01) : 46 - 54
  • [28] Experimental, RSM modelling, and DFT simulation of CO2 adsorption on Modified activated carbon with LiOH
    Ahmadi, Marziyeh
    Bahmanzadegan, Fatemeh
    Qasemnazhand, Mohammad
    Ghaemi, Ahad
    Penchah, Hamid Ramezanipour
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [29] Enhanced CO2 Adsorption on Activated Carbon-Modified HKUST-1 Composites
    Zeng, Ganning
    Yu, Zaohong
    Du, Mingming
    Ai, Ning
    Chen, Wenxian
    Gu, Zhengrong
    Chen, Bing
    CHEMISTRYSELECT, 2018, 3 (41): : 11601 - 11605
  • [30] ADSORPTION AND SEPARATION OF CO2 AND CH4 ON ACTIVATED CARBON MODIFIED BY ACETIC ACID
    Song, Xue
    Wang, Li'ao
    Li, Yifu
    Zeng, Yunmin
    Ma, Xu
    Zhan, Xinyuan
    FRESENIUS ENVIRONMENTAL BULLETIN, 2019, 28 (09): : 6400 - 6410