Classification of sMRI for AD Diagnosis with Convolutional Neuronal Networks: A Pilot 2-D+ε Study on ADNI

被引:31
作者
Aderghal, Karim [1 ,3 ]
Boissenin, Manuel [1 ]
Benois-Pineau, Jenny [1 ]
Catheline, Gwenaelle [2 ]
Afdel, Karim [3 ]
机构
[1] Univ Bordeaux, ENSEIRB, LaBRI, Lab Bordelais Rech Informat, 351 Cours Liberat, F-33405 Talence, France
[2] Univ Victor Segalen, INCIA, CNRS UMR 5287, 146 Rue Leo Saignat, F-33076 Bordeaux, France
[3] Univ Ibn Zhor, LabSIV, BP 32-S, Agadir 80000, Morocco
来源
MULTIMEDIA MODELING (MMM 2017), PT I | 2017年 / 10132卷
关键词
Alzheimer's disease; AD; Convolutional neural network; CNN; Deep learning; Structural magnetic resonance imaging; sMRI; Hippocampus; Computer-aided diagnosis; CAD; MILD COGNITIVE IMPAIRMENT; ALZHEIMERS-DISEASE; DEMENTIA;
D O I
10.1007/978-3-319-51811-4_56
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In interactive health care systems, Convolutional Neural Networks (CNN) are starting to have their applications, e.g. the classification of structural Magnetic Resonance Imaging (sMRI) scans for Alzheimer's disease Computer-Aided Diagnosis (CAD). In this paper we focus on the hippocampus morphology which is known to be affected in relation with the progress of the illness. We use a subset of the ADNI (Alzheimer's Disease Neuroimaging Initiative) database to classify images belonging to Alzheimer's disease (AD), mild cognitive impairment (MCI) and normal control (NC) subjects. As the number of images in such studies is rather limited regarding the needs of CNN, we propose a data augmentation strategy adapted to the specificity of sMRI scans. We also propose a 2-D+epsilon approach, where only a very limited amount of consecutive slices are used for training and classification. The tests conducted on only one - saggital - projection show that this approach provides good classification accuracies: AD/NC 82.8% MCI/NC 66% AD/MCI 62.5% that are promising for integration of this 2-D+epsilon strategy in more complex multi-projection and multi-modal schemes.
引用
收藏
页码:690 / 701
页数:12
相关论文
共 17 条
[1]  
[Anonymous], MULTIMEDIA TOOLS APP, DOI DOI 10.1007/s11042-014-2123-y
[2]   Single subject prediction of brain disorders in neuroimaging: Promises and pitfalls [J].
Arbabshirani, Mohammad R. ;
Plis, Sergey ;
Sui, Jing ;
Calhoun, Vince D. .
NEUROIMAGE, 2017, 145 :137-165
[3]  
Berard A., 2015, COMBIEN COUTE MALADI
[4]   Automated hippocampal shape analysis predicts the onset of dementia in mild cognitive impairment [J].
Costafreda, Sergi G. ;
Dinov, Ivo D. ;
Tu, Zhuowen ;
Shi, Yonggang ;
Liu, Cheng-Yi ;
Kloszewska, Iwona ;
Mecocci, Patrizia ;
Soininen, Hilkka ;
Tsolaki, Magda ;
Vellas, Bruno ;
Wahlund, Lars-Olof ;
Spenger, Christian ;
Toga, Arthur W. ;
Lovestone, Simon ;
Simmons, Andrew .
NEUROIMAGE, 2011, 56 (01) :212-219
[5]   Scoring by nonlocal image patch estimator for early detection of Alzheimer's disease [J].
Coupe, Pierrick ;
Eskildsen, Simon F. ;
Manjon, Jose V. ;
Fonov, Vladimir S. ;
Pruessner, Jens C. ;
Allard, Michele ;
Collins, D. Louis .
NEUROIMAGE-CLINICAL, 2012, 1 (01) :141-152
[6]  
Gaugler J., 2016, ALZH DIS FACTS FIG
[7]  
Hosseini-Asl E., 2016, IEEE ICIP C
[8]   Caffe: Convolutional Architecture for Fast Feature Embedding [J].
Jia, Yangqing ;
Shelhamer, Evan ;
Donahue, Jeff ;
Karayev, Sergey ;
Long, Jonathan ;
Girshick, Ross ;
Guadarrama, Sergio ;
Darrell, Trevor .
PROCEEDINGS OF THE 2014 ACM CONFERENCE ON MULTIMEDIA (MM'14), 2014, :675-678
[9]  
Kenigsberg P-A, 2009, Gerontologie et societe, V32, P297
[10]   A Robust Deep Model for Improved Classification of AD/MCI Patients [J].
Li, Feng ;
Tran, Loc ;
Thung, Kim-Han ;
Ji, Shuiwang ;
Shen, Dinggang ;
Li, Jiang .
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2015, 19 (05) :1610-1616