On classification of discrete, scalar-valued Poisson brackets

被引:0
作者
Parodi, E. [1 ]
机构
[1] SISSA, I-34136 Trieste, Italy
关键词
Discrete Poisson brackets; Discrete Miura transformations; Lie-Poisson groups; LATTICE; SYMMETRIES; SYSTEMS;
D O I
10.1016/j.geomphys.2012.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We address the problem of classifying discrete differential-geometric Poisson brackets (dDGPBs) of any fixed order on a target space of dimension 1. We prove that these Poisson brackets (PBs) are in one-to-one correspondence with the intersection points of certain projective hypersurfaces. In addition, they can be reduced to a cubic PB of the standard Volterra lattice by discrete Miura-type transformations. Finally, by improving a lattice consolidation procedure, we obtain new families of non-degenerate, vector-valued and first-order dDGPBs that can be considered in the framework of admissible Lie-Poisson group theory. (c) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:2059 / 2076
页数:18
相关论文
共 22 条
[1]  
[Anonymous], 1993, DIRAC STRUCTURES INT
[2]  
[Anonymous], 2004, INTEGRABLILITY NONLI
[3]  
BOGOYAVLENSKY OI, 1988, USSR MATH IZV, V31, P435
[4]  
BOGOYAVLENSKY OI, 1988, USSR MATH IZV, V31, P47
[5]  
Dorfman I.Y., 1979, FUNCT ANAL APPL, V13, P248
[6]  
DUBROVIN B., 2001, NORMAL FORMS HIERARC
[7]  
Dubrovin B.A., 1983, SOV MATH DOKL, V27, P665
[8]   DIFFERENTIAL-GEOMETRIC POISSON BRACKETS ON A LATTICE [J].
DUBROVIN, BA .
FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 1989, 23 (02) :131-133
[9]  
DUBROVIN BA, 1984, DOKL AKAD NAUK SSSR+, V279, P294
[10]  
Fadeev L.D., 1986, HAMILTONIAN METHODS