Tissue-Specific Functional Networks for Prioritizing Phenotype and Disease Genes

被引:86
作者
Guan, Yuanfang [1 ,2 ]
Gorenshteyn, Dmitriy [3 ,4 ]
Burmeister, Margit [1 ,5 ,6 ]
Wong, Aaron K. [3 ]
Schimenti, John C. [7 ]
Handel, Mary Ann [8 ]
Bult, Carol J. [8 ]
Hibbs, Matthew A. [8 ,9 ]
Troyanskaya, Olga G. [3 ,10 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Internal Med, Ann Arbor, MI 48109 USA
[3] Princeton Univ, Lewis Sigler Inst Integrat Genom, Princeton, NJ 08544 USA
[4] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[5] Univ Michigan, Dept Psychiat, Mol & Behav Neurosci Inst, Ann Arbor, MI 48109 USA
[6] Univ Michigan, Dept Human Genet, Ann Arbor, MI 48109 USA
[7] Cornell Univ, Coll Vet Med, Dept Biomed Sci, Ithaca, NY 14853 USA
[8] Jackson Lab, Bar Harbor, ME 04609 USA
[9] Trinity Univ, Dept Comp Sci, San Antonio, TX USA
[10] Princeton Univ, Dept Comp Sci, Princeton, NJ 08544 USA
关键词
BIOLOGICAL NETWORKS; EXPRESSION PROFILES; MOUSE; DATABASE; GENOME; PROTEIN; INTEGRATION; PREDICTION; LANDSCAPE; GENETICS;
D O I
10.1371/journal.pcbi.1002694
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Integrated analyses of functional genomics data have enormous potential for identifying phenotype-associated genes. Tissue-specificity is an important aspect of many genetic diseases, reflecting the potentially different roles of proteins and pathways in diverse cell lineages. Accounting for tissue specificity in global integration of functional genomics data is challenging, as "functionality" and "functional relationships" are often not resolved for specific tissue types. We address this challenge by generating tissue-specific functional networks, which can effectively represent the diversity of protein function for more accurate identification of phenotype-associated genes in the laboratory mouse. Specifically, we created 107 tissue-specific functional relationship networks through integration of genomic data utilizing knowledge of tissue-specific gene expression patterns. Cross-network comparison revealed significantly changed genes enriched for functions related to specific tissue development. We then utilized these tissue-specific networks to predict genes associated with different phenotypes. Our results demonstrate that prediction performance is significantly improved through using the tissue-specific networks as compared to the global functional network. We used a testis-specific functional relationship network to predict genes associated with male fertility and spermatogenesis phenotypes, and experimentally confirmed one top prediction, Mbyl1. We then focused on a less-common genetic disease, ataxia, and identified candidates uniquely predicted by the cerebellum network, which are supported by both literature and experimental evidence. Our systems-level, tissue-specific scheme advances over traditional global integration and analyses and establishes a prototype to address the tissue-specific effects of genetic perturbations, diseases and drugs.
引用
收藏
页数:12
相关论文
共 63 条
  • [1] The Biomolecular Interaction Network Database and related tools 2005 update
    Alfarano, C
    Andrade, CE
    Anthony, K
    Bahroos, N
    Bajec, M
    Bantoft, K
    Betel, D
    Bobechko, B
    Boutilier, K
    Burgess, E
    Buzadzija, K
    Cavero, R
    D'Abreo, C
    Donaldson, I
    Dorairajoo, D
    Dumontier, MJ
    Dumontier, MR
    Earles, V
    Farrall, R
    Feldman, H
    Garderman, E
    Gong, Y
    Gonzaga, R
    Grytsan, V
    Gryz, E
    Gu, V
    Haldorsen, E
    Halupa, A
    Haw, R
    Hrvojic, A
    Hurrell, L
    Isserlin, R
    Jack, F
    Juma, F
    Khan, A
    Kon, T
    Konopinsky, S
    Le, V
    Lee, E
    Ling, S
    Magidin, M
    Moniakis, J
    Montojo, J
    Moore, S
    Muskat, B
    Ng, I
    Paraiso, JP
    Parker, B
    Pintilie, G
    Pirone, R
    [J]. NUCLEIC ACIDS RESEARCH, 2005, 33 : D418 - D424
  • [2] [Anonymous], 2000, NATURE STAT LEARNING, DOI DOI 10.1007/978-1-4757-3264-1
  • [3] The IntAct molecular interaction database in 2010
    Aranda, B.
    Achuthan, P.
    Alam-Faruque, Y.
    Armean, I.
    Bridge, A.
    Derow, C.
    Feuermann, M.
    Ghanbarian, A. T.
    Kerrien, S.
    Khadake, J.
    Kerssemakers, J.
    Leroy, C.
    Menden, M.
    Michaut, M.
    Montecchi-Palazzi, L.
    Neuhauser, S. N.
    Orchard, S.
    Perreau, V.
    Roechert, B.
    van Eijk, K.
    Hermjakob, H.
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D525 - D531
  • [4] A dominant, recombination-defective allele of Dmc1 causing male-specific sterility
    Bannister, Laura A.
    Pezza, Roberto J.
    Donaldson, Janet R.
    de Rooij, Dirk G.
    Schimenti, Kerry J.
    Camerini-Otero, R. Daniel
    Schimenti, John C.
    [J]. PLOS BIOLOGY, 2007, 5 (05): : 1016 - 1025
  • [5] Regulation of osteoblastogenesis and bone mass by Wnt10b
    Bennett, CN
    Longo, KA
    Wright, WS
    Suva, LJ
    Lane, TF
    Hankenson, KD
    MacDougald, OA
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2005, 102 (09) : 3324 - 3329
  • [6] The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics
    Blake, Judith A.
    Bult, Carol J.
    Kadin, James A.
    Richardson, Joel E.
    Eppig, Janan T.
    [J]. NUCLEIC ACIDS RESEARCH, 2011, 39 : D842 - D848
  • [7] A-MYB (MYBL1) transcription factor is a master regulator of male meiosis
    Bolcun-Filas, Ewelina
    Bannister, Laura A.
    Barash, Alex
    Schimenti, Kerry J.
    Hartford, Suzanne A.
    Eppig, John J.
    Handel, Mary Ann
    Shen, Lishuang
    Schimenti, John C.
    [J]. DEVELOPMENT, 2011, 138 (15): : 3319 - 3330
  • [8] Breiman L, 1996, MACH LEARN, V24, P123, DOI 10.1023/A:1018054314350
  • [9] Molecular genetics of hereditary spinocerebellar ataxia - Mutation analysis of spinocerebellar ataxia genes and CAG/CTG repeat expansion detection in 225 Italian families
    Brusco, A
    Gellera, C
    Cagnoli, C
    Saluto, A
    Castucci, A
    Michielotto, C
    Fetoni, V
    Mariotti, C
    Migone, N
    Di Donato, S
    Taroni, F
    [J]. ARCHIVES OF NEUROLOGY, 2004, 61 (05) : 727 - 733
  • [10] MINT, the molecular interaction database: 2009 update
    Ceol, Arnaud
    Aryamontri, Andrew Chatr
    Licata, Luana
    Peluso, Daniele
    Briganti, Leonardo
    Perfetto, Livia
    Castagnoli, Luisa
    Cesareni, Gianni
    [J]. NUCLEIC ACIDS RESEARCH, 2010, 38 : D532 - D539