Regularization independent of the noise level: an analysis of quasi-optimality

被引:37
作者
Bauer, Frank [1 ]
Reiss, Markus [2 ]
机构
[1] Johannes Kepler Univ Linz, Fuzzy Log Lab Linz Hagenberg, A-4232 Hagenberg, Austria
[2] Univ Heidelberg, Inst Appl Math, D-69120 Heidelberg, Germany
关键词
D O I
10.1088/0266-5611/24/5/055009
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The quasi-optimality criterion chooses the regularization parameter in inverse problems without taking into account the noise level. This rule works remarkably well in practice, although Bakushinskii has shown that there are always counterexamples with very poor performance. We propose an average case analysis of quasi-optimality for spectral cut-off estimators (also known as truncated singular value decomposition, TSVD) and we prove that the quasi-optimality criterion determines estimators which are rate-optimal on average. Its practical performance is illustrated with a calibration problem from mathematical finance.
引用
收藏
页数:16
相关论文
共 16 条
[1]  
BAKUSHINSKII AB, 1984, USSR COMP MATH MATH+, V24, P181, DOI 10.1016/0041-5553(84)90253-2
[2]   Regularization without preliminary knowledge of smoothness and error behaviour [J].
Bauer, F ;
Pereverzev, S .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2005, 16 :303-317
[3]   Some considerations concerning regularization and parameter choice algorithms [J].
Bauer, Frank .
INVERSE PROBLEMS, 2007, 23 (02) :837-858
[4]   Spectral calibration of exponential Levy models [J].
Belomestny, Denis ;
Reiss, Markus .
FINANCE AND STOCHASTICS, 2006, 10 (04) :449-474
[5]   Adaptive wavelet Galerkin methods for linear inverse problems [J].
Cohen, A ;
Hoffmann, M ;
Reiss, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2004, 42 (04) :1479-1501
[6]  
Cont R., 2004, CHAPMAN HALL CRC FIN
[7]   Calibration of the local volatility in a generalized Black-Scholes model using Tikhonov regularization [J].
Crépey, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 34 (05) :1183-1206
[8]   On decoupling of volatility smile and term structure in inverse option pricing [J].
Egger, Herbert ;
Hein, Torsten ;
Hofmann, Bernd .
INVERSE PROBLEMS, 2006, 22 (04) :1247-1259
[9]  
Engl H., 1996, REGULARIZATION INVER
[10]  
Kaipio J. P., 2005, APPL MATH SCI, V160, DOI DOI 10.1007/B138659