Schur multipliers and the Lazard correspondence

被引:16
作者
Eick, Bettina [1 ]
Horn, Max [1 ]
Zandi, Seiran [2 ]
机构
[1] Tech Univ Carolo Wilhelmina Braunschweig, D-38106 Braunschweig, Germany
[2] Tarbiat Moallem Univ, Dept Math Sci, Tehran, Iran
关键词
Schur multiplier; p-groups; Lie rings; Lazard correspondence;
D O I
10.1007/s00013-012-0426-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite p-group of nilpotency class less than p-1, and let L be the Lie ring corresponding to G via the Lazard correspondence. We show that the Schur multipliers of G and L are isomorphic as abelian groups and that every Schur cover of G is in Lazard correspondence with a Schur cover of L. Further, we show that the epicenters of G and L are isomorphic as abelian groups. Thus the group G is capable if and only if the Lie ring L is capable.
引用
收藏
页码:217 / 226
页数:10
相关论文
共 12 条
[1]  
BAER R, 1938, T AM MATH SOC, V44, P387
[2]   Homology of multiplicative Lie rings [J].
Bak, A. ;
Donadze, G. ;
Inassaridze, N. ;
Ladra, M. .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 208 (02) :761-777
[3]   GROUPS OCCURRING AS CENTER FACTOR GROUPS [J].
BEYL, FR ;
FELGNER, U ;
SCHMID, P .
JOURNAL OF ALGEBRA, 1979, 61 (01) :161-177
[4]  
Bourbaki N., 1972, Groupes et algebres de Lie
[5]   An effective version of the Lazard correspondence [J].
Cicalo, Serena ;
de Graaf, Willem A. ;
Vaughan-Lee, Michael .
JOURNAL OF ALGEBRA, 2012, 352 (01) :430-450
[6]   Computing the Schur multiplicator and the nonabelian tensor square of a polycyclic group [J].
Eick, Bettina ;
Nickel, Werner .
JOURNAL OF ALGEBRA, 2008, 320 (02) :927-944
[7]  
Horn M., 2012, COMPUTING SCHU UNPUB
[8]  
L54 LAZARD M., 1954, Ann. Sci. Ecole Norm. Sup., V71, P101
[9]  
Robinson DJS., 1995, COURSE THEORY GROUPS
[10]  
Schur J, 1904, J REINE ANGEW MATH, V127, P20