Rational points on Jacobians of hyperelliptic curves

被引:0
作者
Mueller, Jan Steffen [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
来源
ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS | 2015年 / 41卷
关键词
hyperelliptic curves; Jacobians; rational points; descent; heights; EXPLICIT N-DESCENT; ELLIPTIC-CURVES; ABELIAN-VARIETIES; CANONICAL HEIGHTS; NERON-TATE; GENUS; DIFFERENCE; BIRCH; MULTIPLICATION; CONJECTURES;
D O I
10.3233/978-1-61499-520-3-225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe how to prove the Mordell-Weil theorem for Jacobians of hyperelliptic curves over Q and how to compute the rank and generators for the Mordell-Weil group.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 84 条
[51]  
Miller RL, 2013, MATH COMPUT, V82, P513
[52]  
Milne J. S., 1986, ARITHMETIC GEOMETRY, P103
[53]  
Mordell LJ, 1923, P CAMB PHILOS SOC, V21, P179
[54]  
Müller JS, 2014, MATH COMPUT, V83, P311
[55]   Explicit Kummer surface formulas for arbitrary characteristic [J].
Mueller, Jan Steffen .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :47-64
[56]  
Muller Jan Steffen, LMS J COMPUT MATH
[57]  
Mumford D., 1966, Invent. Math, V1, P287, DOI DOI 10.1007/BF01389737
[58]   QUASI-FONCTIONS ET HAUTEURS SUR LES VARIETES ABELIENNES [J].
NERON, A .
ANNALS OF MATHEMATICS, 1965, 82 (02) :249-&
[59]  
Pohst M., 1997, ENCY MATH ITS APPL, V30
[60]  
Poonen B, 1997, J REINE ANGEW MATH, V488, P141