Rational points on Jacobians of hyperelliptic curves

被引:0
作者
Mueller, Jan Steffen [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
来源
ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS | 2015年 / 41卷
关键词
hyperelliptic curves; Jacobians; rational points; descent; heights; EXPLICIT N-DESCENT; ELLIPTIC-CURVES; ABELIAN-VARIETIES; CANONICAL HEIGHTS; NERON-TATE; GENUS; DIFFERENCE; BIRCH; MULTIPLICATION; CONJECTURES;
D O I
10.3233/978-1-61499-520-3-225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe how to prove the Mordell-Weil theorem for Jacobians of hyperelliptic curves over Q and how to compute the rank and generators for the Mordell-Weil group.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 84 条
[21]  
Duquesne S, 2004, LECT NOTES COMPUT SC, V3076, P153
[22]   Traces of the group law on the Kummer surface of a curve of genus 2 in characteristic 2 [J].
Duquesne S. .
Mathematics in Computer Science, 2010, 3 (2) :173-183
[23]   THEORIES OF FINITENESS FOR ABELIAN-VARIETIES OVER NUMBER-FIELDS [J].
FALTINGS, G .
INVENTIONES MATHEMATICAE, 1983, 73 (03) :349-366
[24]   CALCULUS ON ARITHMETIC SURFACES [J].
FALTINGS, G .
ANNALS OF MATHEMATICS, 1984, 119 (02) :387-424
[25]   Two-coverings of Jacobians of curves of genus 2 [J].
Flynn, E. Victor ;
Testa, Damiano ;
van Luijk, Ronald .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2012, 104 :387-429
[26]   THE JACOBIAN AND FORMAL GROUP OF A CURVE OF GENUS-2 OVER AN ARBITRARY GROUND FIELD [J].
FLYNN, EV .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1990, 107 :425-441
[27]   DESCENT VIA ISOGENY IN DIMENSION-2 [J].
FLYNN, EV .
ACTA ARITHMETICA, 1994, 66 (01) :23-43
[28]   Empirical evidence for the Birch and Swinnerton-Dyer conjectures for modular Jacobians of genus 2 curves [J].
Flynn, EV ;
Leprévost, F ;
Schaefer, EF ;
Stein, WA ;
Stoll, M ;
Wetherell, JL .
MATHEMATICS OF COMPUTATION, 2001, 70 (236) :1675-1697
[29]  
FLYNN EV, 1993, J REINE ANGEW MATH, V439, P45
[30]  
Flynn EV, 1997, ACTA ARITH, V79, P333