Rational points on Jacobians of hyperelliptic curves

被引:0
作者
Mueller, Jan Steffen [1 ]
机构
[1] Carl von Ossietzky Univ Oldenburg, Inst Math, D-26111 Oldenburg, Germany
来源
ADVANCES ON SUPERELLIPTIC CURVES AND THEIR APPLICATIONS | 2015年 / 41卷
关键词
hyperelliptic curves; Jacobians; rational points; descent; heights; EXPLICIT N-DESCENT; ELLIPTIC-CURVES; ABELIAN-VARIETIES; CANONICAL HEIGHTS; NERON-TATE; GENUS; DIFFERENCE; BIRCH; MULTIPLICATION; CONJECTURES;
D O I
10.3233/978-1-61499-520-3-225
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We describe how to prove the Mordell-Weil theorem for Jacobians of hyperelliptic curves over Q and how to compute the rank and generators for the Mordell-Weil group.
引用
收藏
页码:225 / 259
页数:35
相关论文
共 84 条
[1]  
[Anonymous], CALCUL HAUTEUR UNPUB
[2]  
[Anonymous], 1986, GRADUATE TEXTS MATH
[3]  
[Anonymous], 2004, Grundl. Math. Wiss.
[4]  
[Anonymous], 1986, Arithmetic Geometry
[5]  
[Anonymous], PREPRINT
[6]  
Balakrishnan J. S., 2012, PREPRINT
[7]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[8]  
Bradshaw R., 2013, THESIS
[9]  
Bruin P, 2013, ACTA ARITH, V160, P385
[10]   RANK OF ELLIPTIC CURVES [J].
BRUMER, A ;
KRAMER, K .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (04) :715-743