A fractional-step thermal lattice Boltzmann model for high Peclet number flow

被引:6
作者
Deng, Lin [1 ]
Zhang, Yun [1 ]
Wen, Yanwei [1 ]
Shan, Bin [1 ]
Zhou, Huamin [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Mat Proc & Die & Mould Technol, Wuhan 430074, Peoples R China
关键词
Thermal lattice Boltzmann model; Fractional-step method; Strang operator splitting; High Peclet number (Pe); Polymer injection molding; ADVECTION-DIFFUSION EQUATION; NAVIER-STOKES EQUATION; STABILITY ANALYSIS; SIMULATION; SCHEMES;
D O I
10.1016/j.camwa.2015.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
As a promising approach in hydrodynamics and thermodynamics modeling, the lattice Boltzmann method (LBM) still suffers severe numerical instability when the temperature field of the flow is convection-dominant (high Peclet number). Despite a lot of research devoted to solve this problem worldwide, to simulate high Peclet number thermal flow at comparably few computational Cost is still a hard work, making it inefficient in practical use. In this paper, we combine the LBM and the fractional-step method to propose a novel and stable thermal lattice Boltzmann scheme for high Peclet number flow without refining the lattice. By numerical tests of thermal Poiseuille flow and Couette flow, we quantify second-order accuracy of the proposed model, and through several cases of Peclet number from low to high, the superior stability and efficiency compared with existing thermal lattice Boltzmann model. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1152 / 1161
页数:10
相关论文
共 43 条
[1]   Lattice-Boltzmann Method for Complex Flows [J].
Aidun, Cyrus K. ;
Clausen, Jonathan R. .
ANNUAL REVIEW OF FLUID MECHANICS, 2010, 42 :439-472
[2]   LATTICE BOLTZMANN THERMOHYDRODYNAMICS [J].
ALEXANDER, FJ ;
CHEN, S ;
STERLING, JD .
PHYSICAL REVIEW E, 1993, 47 (04) :R2249-R2252
[3]   Lattice Boltzmann method for fluid flows [J].
Chen, S ;
Doolen, GD .
ANNUAL REVIEW OF FLUID MECHANICS, 1998, 30 :329-364
[4]   THERMAL LATTICE BHATNAGAR-GROSS-KROOK MODEL WITHOUT NONLINEAR DEVIATIONS IN MACRODYNAMIC EQUATIONS [J].
CHEN, Y ;
OHASHI, H ;
AKIYAMA, M .
PHYSICAL REVIEW E, 1994, 50 (04) :2776-2783
[5]  
Corfield I., 2006, Viscous Fluid Flow, V3
[6]   An interpretation and derivation of the lattice Boltzmann method using Strang splitting [J].
Dellar, Paul J. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 65 (02) :129-141
[7]   Modelling of solidification process of aluminium foams using lattice Boltzmann method [J].
Diop, M. ;
Hao, H. ;
Dong, H. -W. ;
Zhang, X. -G. ;
Yao, S. ;
Jin, J. -Z. .
INTERNATIONAL JOURNAL OF CAST METALS RESEARCH, 2011, 24 (3-4) :158-162
[8]   Finite-difference stable stencils based on least-square quadric fitting [J].
Dupuy, Pablo M. ;
Svendsen, H. F. ;
Patruno, Luciano E. ;
Jakobsen, Hugo A. .
COMPUTER PHYSICS COMMUNICATIONS, 2010, 181 (10) :1671-1681
[9]   Lattice Boltzmann simulation of natural convection heat transfer in nanofluids [J].
Fattahi, Ehsan ;
Farhadi, Mousa ;
Sedighi, Kurosh ;
Nemati, Hasan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2012, 52 :137-144
[10]   Algebraic fractional-step schemes for time-dependent incompressible Navier-Stokes equations [J].
Gervasio, P ;
Saleri, F .
JOURNAL OF SCIENTIFIC COMPUTING, 2006, 27 (1-3) :257-269