A STOCHASTIC MAXIMUM PRINCIPLE WITH DISSIPATIVITY CONDITIONS

被引:4
|
作者
Orrieri, Carlo [1 ]
机构
[1] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
关键词
Stochastic maximum principle; dissipative systems; backward stochastic differential equation; stochastic optimal control; necessary conditions for optimality;
D O I
10.3934/dcds.2015.35.5499
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove a version of the maximum principle, in the sense of Pontryagin, for the optimal control of a finite dimensional stochastic differential equation, driven by a multidimensional Wiener process. We drop the usual Lipschitz assumption on the drift term and substitute it with dissipativity conditions, allowing polynomial growth. The control enters both the drift and the diffusion term and takes values in a general metric space.
引用
收藏
页码:5499 / 5519
页数:21
相关论文
共 50 条