Higher-order discontinuous Galerkin time stepping and local projection stabilization techniques for the transient Stokes problem

被引:18
|
作者
Ahmed, Naveed [1 ]
Becher, Simon [2 ]
Matthies, Gunar [2 ]
机构
[1] Weierstr Inst Appl Anal & Stochast WIAS, Mohrenstr 39, D-10117 Berlin, Germany
[2] Tech Univ Dresden, Inst Numer Math, D-01062 Dresden, Germany
关键词
Stabilized finite elements; Transient Stokes equations; Equal-order elements; Local projection; Discontinuous Galerkin methods; FINITE-ELEMENT-METHOD; ERROR ANALYSIS; EQUATIONS; DISCRETIZATION; APPROXIMATIONS; EULER;
D O I
10.1016/j.cma.2016.09.026
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We introduce and analyze discontinuous Galerkin time discretizations coupled with continuous finite element methods based on equal-order interpolation in space for velocity and pressure in transient Stokes problems. Spatial stability of the pressure is ensured by adding a stabilization term based on local projection. We present error estimates for the semi-discrete problem after discretization in space only and for the fully discrete problem. The fully discrete pressure shows an instability in the limit of small time step length. Numerical tests are presented which confirm our theoretical results including the pressure instability. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:28 / 52
页数:25
相关论文
共 50 条
  • [31] Multilevel and local time-stepping discontinuous Galerkin methods for magma dynamics
    Tirupathi, S.
    Hesthaven, J. S.
    Liang, Y.
    Parmentier, M.
    COMPUTATIONAL GEOSCIENCES, 2015, 19 (04) : 965 - 978
  • [32] Multilevel and local time-stepping discontinuous Galerkin methods for magma dynamics
    S. Tirupathi
    J. S. Hesthaven
    Y. Liang
    M. Parmentier
    Computational Geosciences, 2015, 19 : 965 - 978
  • [33] Higher-order discontinuous Galerkin method for pyramidal elements using orthogonal bases
    Bergot, Morgane
    Durufle, Marc
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2013, 29 (01) : 144 - 169
  • [34] Error analysis of a discontinuous Galerkin method for systems of higher-order differential equations
    Temimi, Helmi
    Adjerid, Slimane
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (09) : 4503 - 4525
  • [35] Local Projection FEM Stabilization for the Time-Dependent Incompressible Navier-Stokes Problem
    Arndt, Daniel
    Dallmann, Helene
    Lube, Gert
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2015, 31 (04) : 1224 - 1250
  • [36] HIGHER ORDER CONTINUOUS GALERKIN PETROV TIME STEPPING SCHEMES FOR TRANSIENT CONVECTION-DIFFUSION-REACTION EQUATIONS
    Ahmed, Naveed
    Matthies, Gunar
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (05): : 1429 - 1450
  • [37] Equal Higher Order Analysis of an Unfitted Discontinuous Galerkin Method for Stokes Flow Systems
    Aretaki, Aikaterini
    Karatzas, Efthymios N.
    Katsouleas, Georgios
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [38] Equal Higher Order Analysis of an Unfitted Discontinuous Galerkin Method for Stokes Flow Systems
    Aikaterini Aretaki
    Efthymios N. Karatzas
    Georgios Katsouleas
    Journal of Scientific Computing, 2022, 91
  • [39] An arbitrary high-order discontinuous Galerkin method with local time-stepping for linear acoustic wave propagation
    Wang, Huiqing
    Cosnefroy, Matthias
    Hornikx, Maarten
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 2021, 149 (01): : 569 - 580
  • [40] IMPLEMENTATION OF HIGH-ORDER, DISCONTINUOUS GALERKIN TIME STEPPING FOR FRACTIONAL DIFFUSION PROBLEMS
    McLean, William
    ANZIAM JOURNAL, 2020, 62 (02): : 121 - 147