SPANNING TREES AND KHOVANOV HOMOLOGY

被引:24
作者
Champanerkar, Abhijit [1 ]
Kofman, Ilya [1 ]
机构
[1] CUNY Coll Staten Isl, Dept Math, Staten Isl, NY 10314 USA
基金
美国国家科学基金会;
关键词
D O I
10.1090/S0002-9939-09-09729-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Jones polynomial can be expressed in terms of spanning trees of the graph obtained by checkerboard coloring a knot diagram. We show that there exists a complex generated by these spanning trees whose homology is the reduced Khovanov homology. The spanning trees provide a filtration on the reduced Khovanov complex and a spectral sequence that converges to its homology. For alternating links, all differentials on the spanning tree complex are zero and the reduced Khovanov homology is determined by the Jones polynomial and signature. We prove some analogous theorems for (unreduced) Khovanov homology.
引用
收藏
页码:2157 / 2167
页数:11
相关论文
共 13 条
[1]  
Asaeda MM, 2004, NATO SCI SER II MATH, V179, P135
[2]   Graphs on surfaces and Khovanov homology [J].
Champanerkar, Abhijit ;
Kofman, Ilya ;
Stoltzfus, Neal .
ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2007, 7 :1531-1540
[3]   Patterns in knot cohomology, I [J].
Khovanov, M .
EXPERIMENTAL MATHEMATICS, 2003, 12 (03) :365-374
[4]   A categorification of the Jones polynomial [J].
Khovanov, M .
DUKE MATHEMATICAL JOURNAL, 2000, 101 (03) :359-426
[5]   An endomorphism of the Khovanov invariant [J].
Lee, ES .
ADVANCES IN MATHEMATICS, 2005, 197 (02) :554-586
[6]  
MANTUROV V, ARXIVMATHGT0501393
[7]  
RASMUSSEN J, ARXIVMATHGT0306378
[8]  
SHUMAKOVITCH A, ARXIVMATHGT0405474
[9]   A SPANNING TREE EXPANSION OF THE JONES POLYNOMIAL [J].
THISTLETHWAITE, MB .
TOPOLOGY, 1987, 26 (03) :297-309
[10]   A combinatorial formula for the signature of alternating diagrams [J].
Traczyk, P .
FUNDAMENTA MATHEMATICAE, 2004, 184 :311-316