Parameter estimation algorithms for hierarchical distributed systems

被引:7
|
作者
Al-Dabass, D
Zreiba, A
Evans, DJ
Sivayoganathan, S
机构
[1] Nottingham Trent Univ, Dept Comp, Nottingham NG1 4BU, England
[2] Nottingham Trent Univ, Dept Mech & Mfg Engn, Nottingham NG1 4BU, England
关键词
parameter estimation; 1st and 2nd order dynamics; hierarchical models; ODE solvers;
D O I
10.1080/00207160211916
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been a great deal of research activity in the area of identification of distributed parameter systems over the past two decades. An extensive treatment of off-line schemes (e.g., output least squares, estimation error, etc.) together with a comprehensive survey of the literature can be found in the monograph by Banks and Kunisch [4]. In the case of on-line, or adaptive, schemes, the available literature is less extensive and more recent (Isermann et al. [7]). The on-line methods give estimates recursively as the measurements are obtained within the time limit imposed by the sampling period. These include recursive projection algorithm (Baumeister et al. [5]), recursive least squares algorithm (Glentis et al. [6]), on-line excitation algorithms (Ludwig et al. [8]), etc. In this paper an equivalent 2nd order dynamical system is formulated from a given trajectory representing the pattern to be recognised and simulated in order to estimate the parameters for hierarchical distributed systems using 1st and 2nd order dynamics. Recommendations for the best estimation strategy are given.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [41] Optimal spatial sampling scheme for parameter estimation of nonlinear distributed parameter systems
    Alana, Jorge E.
    Theodoropoulos, Constantinos
    COMPUTERS & CHEMICAL ENGINEERING, 2012, 45 : 38 - 49
  • [43] Parameter set estimation algorithms for time-varying systems
    Watkins, J
    Yurkovich, S
    INTERNATIONAL JOURNAL OF CONTROL, 1997, 66 (05) : 711 - 731
  • [44] Recursive minimum component algorithms for parameter estimation of dynamic systems
    Li, Huxiong
    Mu, Bingxian
    Zuo, Lei
    NEUROCOMPUTING, 2016, 186 : 251 - 257
  • [45] Parameter set estimation algorithms for time-varying systems
    US Naval Acad, Annapolis, United States
    Int J Control, 5 (711-731):
  • [46] Adaptive filtering parameter estimation algorithms for Hammerstein nonlinear systems
    Mao, Yawen
    Ding, Feng
    Alsaedi, Ahmed
    Hayat, Tasawar
    SIGNAL PROCESSING, 2016, 128 : 417 - 425
  • [47] Distributed parameter estimation in unreliable sensor networks via broadcast gossip algorithms
    Wang, Huiwei
    Liao, Xiaofeng
    Wang, Zidong
    Huang, Tingwen
    Chen, Guo
    NEURAL NETWORKS, 2016, 73 : 1 - 9
  • [48] Optimal location of sensors for parameter estimation of static distributed systems
    Patan, M
    Ucinski, D
    PARALLEL PROCESSING APPLIED MATHEMATICS, 2002, 2328 : 729 - 737
  • [49] Fault Detection and Estimation for a Class of Nonlinear Distributed Parameter Systems
    Ferdowsi, Hasan
    Cai, Jia
    Jagannathan, Sarangapani
    2019 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT (ICPHM), 2019,
  • [50] State estimation for Distributed Parameter Systems under intermittent observations
    Muraca, Pietro
    Pugliese, Paolo
    2009 IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION, VOLS 1-3, 2009, : 926 - 930