Parameter estimation algorithms for hierarchical distributed systems

被引:7
|
作者
Al-Dabass, D
Zreiba, A
Evans, DJ
Sivayoganathan, S
机构
[1] Nottingham Trent Univ, Dept Comp, Nottingham NG1 4BU, England
[2] Nottingham Trent Univ, Dept Mech & Mfg Engn, Nottingham NG1 4BU, England
关键词
parameter estimation; 1st and 2nd order dynamics; hierarchical models; ODE solvers;
D O I
10.1080/00207160211916
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been a great deal of research activity in the area of identification of distributed parameter systems over the past two decades. An extensive treatment of off-line schemes (e.g., output least squares, estimation error, etc.) together with a comprehensive survey of the literature can be found in the monograph by Banks and Kunisch [4]. In the case of on-line, or adaptive, schemes, the available literature is less extensive and more recent (Isermann et al. [7]). The on-line methods give estimates recursively as the measurements are obtained within the time limit imposed by the sampling period. These include recursive projection algorithm (Baumeister et al. [5]), recursive least squares algorithm (Glentis et al. [6]), on-line excitation algorithms (Ludwig et al. [8]), etc. In this paper an equivalent 2nd order dynamical system is formulated from a given trajectory representing the pattern to be recognised and simulated in order to estimate the parameters for hierarchical distributed systems using 1st and 2nd order dynamics. Recommendations for the best estimation strategy are given.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [31] Optimal weighting design for distributed parameter systems estimation
    Ouarit, M
    Yvon, JP
    Henry, J
    OPTIMAL CONTROL APPLICATIONS & METHODS, 2001, 22 (01): : 37 - 49
  • [32] A MODAL APPROACH FOR ESTIMATION IN DISTRIBUTED PARAMETER-SYSTEMS
    IBIDAPOOBE, O
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1982, 13 (10) : 1165 - 1170
  • [33] Joint state and parameter estimation for distributed mechanical systems
    Moireau, Philippe
    Chapelle, Dominique
    Le Tallec, Patrick
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (6-8) : 659 - 677
  • [34] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2022, 181 : 74 - 86
  • [35] Distributed simultaneous state and parameter estimation of nonlinear systems
    Liu, Siyu
    Yin, Xunyuan
    Liu, Jianbang
    Liu, Jinfeng
    Ding, Feng
    Chemical Engineering Research and Design, 2022, 181 : 74 - 86
  • [36] DISTRIBUTED PARAMETER IDENTIFICATION OF GROUNDWATER SYSTEMS BY NONLINEAR ESTIMATION
    LOPEZGARAY, H
    HAIMES, YY
    DAS, P
    JOURNAL OF HYDROLOGY, 1976, 30 (1-2) : 47 - 61
  • [37] Hierarchical distributed genetic algorithms
    Herrera, F
    Lozano, M
    Moraga, C
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 1999, 14 (11) : 1099 - 1121
  • [38] Hierarchical estimation algorithms for multivariable systems using measurement information
    Ding, Feng
    INFORMATION SCIENCES, 2014, 277 : 396 - 405
  • [39] OPTIMAL MEASUREMENT LOCATIONS FOR PARAMETER ESTIMATION OF NON LINEAR DISTRIBUTED PARAMETER SYSTEMS
    Alana, J. E.
    BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING, 2010, 27 (04) : 627 - 642
  • [40] PC ENVIRONMENT FOR SIMULATION AND PARAMETER-ESTIMATION OF DISTRIBUTED-PARAMETER SYSTEMS
    POINT, N
    VANDEWOUWER, A
    REMY, M
    ZEITZ, M
    MATHEMATICS AND COMPUTERS IN SIMULATION, 1993, 35 (06) : 481 - 491