Parameter estimation algorithms for hierarchical distributed systems

被引:7
|
作者
Al-Dabass, D
Zreiba, A
Evans, DJ
Sivayoganathan, S
机构
[1] Nottingham Trent Univ, Dept Comp, Nottingham NG1 4BU, England
[2] Nottingham Trent Univ, Dept Mech & Mfg Engn, Nottingham NG1 4BU, England
关键词
parameter estimation; 1st and 2nd order dynamics; hierarchical models; ODE solvers;
D O I
10.1080/00207160211916
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been a great deal of research activity in the area of identification of distributed parameter systems over the past two decades. An extensive treatment of off-line schemes (e.g., output least squares, estimation error, etc.) together with a comprehensive survey of the literature can be found in the monograph by Banks and Kunisch [4]. In the case of on-line, or adaptive, schemes, the available literature is less extensive and more recent (Isermann et al. [7]). The on-line methods give estimates recursively as the measurements are obtained within the time limit imposed by the sampling period. These include recursive projection algorithm (Baumeister et al. [5]), recursive least squares algorithm (Glentis et al. [6]), on-line excitation algorithms (Ludwig et al. [8]), etc. In this paper an equivalent 2nd order dynamical system is formulated from a given trajectory representing the pattern to be recognised and simulated in order to estimate the parameters for hierarchical distributed systems using 1st and 2nd order dynamics. Recommendations for the best estimation strategy are given.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [21] Optimization of collective communication algorithms for hierarchical distributed computer systems
    Kurnosov, Mikhail G.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2011, 15 (02): : 61 - 71
  • [22] SOME ALGORITHMS FOR THE CONSTRUCTION OF COORDINATED SOLUTIONS IN HIERARCHICAL DISTRIBUTED SYSTEMS
    TRENEV, NN
    CYBERNETICS, 1990, 26 (02): : 193 - 199
  • [23] On iterative parameter estimation algorithms for OE and OEMA systems
    Ding, Feng
    Liu, Peter X.
    2008 IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, VOLS 1-5, 2008, : 1603 - +
  • [24] Parameter estimation algorithms for multivariable Hammerstein CARMA systems
    Wang, Dongqing
    Ding, Feng
    INFORMATION SCIENCES, 2016, 355 : 237 - 248
  • [25] Multistage parameter estimation algorithms for identification of bilinear systems
    Fatemeh Shahriari
    Mohammad Mehdi Arefi
    Hao Luo
    Shen Yin
    Nonlinear Dynamics, 2022, 110 : 2635 - 2655
  • [26] Parameter Estimation Algorithms for Missing-Data Systems
    Ding, Feng
    Ding, Jie
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 5032 - 5036
  • [27] Multistage parameter estimation algorithms for identification of bilinear systems
    Shahriari, Fatemeh
    Arefi, Mohammad Mehdi
    Luo, Hao
    Yin, Shen
    NONLINEAR DYNAMICS, 2022, 110 (03) : 2635 - 2655
  • [28] Simplified estimation algorithms for hereditary systems with a small parameter
    Mao, X.
    Matasov, A.I.
    2001, Izdatel'stvo Moskovskogo Universiteta
  • [29] Distributed and decentralized state estimation in gas networks as distributed parameter systems
    Behrooz, Hesam Ahmadian
    Boozarjomehry, R. Bozorgmehry
    ISA TRANSACTIONS, 2015, 58 : 552 - 566
  • [30] A distributed approach for parameter estimation in Systems Biology models
    Mosca, E.
    Merelli, I.
    Alfieri, R.
    Milanesi, L.
    NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA C-COLLOQUIA ON PHYSICS, 2009, 32 (02): : 165 - 168