Parameter estimation algorithms for hierarchical distributed systems

被引:7
|
作者
Al-Dabass, D
Zreiba, A
Evans, DJ
Sivayoganathan, S
机构
[1] Nottingham Trent Univ, Dept Comp, Nottingham NG1 4BU, England
[2] Nottingham Trent Univ, Dept Mech & Mfg Engn, Nottingham NG1 4BU, England
关键词
parameter estimation; 1st and 2nd order dynamics; hierarchical models; ODE solvers;
D O I
10.1080/00207160211916
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
There has been a great deal of research activity in the area of identification of distributed parameter systems over the past two decades. An extensive treatment of off-line schemes (e.g., output least squares, estimation error, etc.) together with a comprehensive survey of the literature can be found in the monograph by Banks and Kunisch [4]. In the case of on-line, or adaptive, schemes, the available literature is less extensive and more recent (Isermann et al. [7]). The on-line methods give estimates recursively as the measurements are obtained within the time limit imposed by the sampling period. These include recursive projection algorithm (Baumeister et al. [5]), recursive least squares algorithm (Glentis et al. [6]), on-line excitation algorithms (Ludwig et al. [8]), etc. In this paper an equivalent 2nd order dynamical system is formulated from a given trajectory representing the pattern to be recognised and simulated in order to estimate the parameters for hierarchical distributed systems using 1st and 2nd order dynamics. Recommendations for the best estimation strategy are given.
引用
收藏
页码:65 / 88
页数:24
相关论文
共 50 条
  • [1] HIERARCHICAL DIFFUSION ALGORITHMS FOR DISTRIBUTED ESTIMATION
    Cattivelli, Federico S.
    Sayed, Ali H.
    2009 IEEE/SP 15TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING, VOLS 1 AND 2, 2009, : 537 - 540
  • [2] Hierarchical Stochastic Gradient Parameter Estimation Algorithms for Multivariable Systems with Colored Noises
    Ding, Feng
    Liu, Yanjun
    2009 AMERICAN CONTROL CONFERENCE, VOLS 1-9, 2009, : 3830 - 3835
  • [3] ESTIMATION OF DISTRIBUTED PARAMETER-SYSTEMS
    SCHAECHTER, DB
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1982, 5 (01) : 22 - 26
  • [5] Design of auxiliary model and hierarchical normalized fractional adaptive algorithms for parameter estimation of bilinear-in-parameter systems
    Zhu, Yancheng
    Wu, Huaiyu
    Chen, Zhihuan
    Chen, Yang
    Zheng, Xiujuan
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2022, 36 (10) : 2562 - 2584
  • [6] Hierarchical parameter and state estimation for bilinear systems
    Zhang, Xiao
    Ding, Feng
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2020, 51 (02) : 275 - 290
  • [7] Hierarchical sliding mode observers for distributed parameter systems
    Drakunov, Sergey V.
    Reyhanoglu, Mahmut
    JOURNAL OF VIBRATION AND CONTROL, 2011, 17 (10) : 1441 - 1453
  • [8] Evolutionary Algorithms for Parameter Estimation of Metabolic Systems
    Lebedik, Anastasia Slustikova
    Zelinka, Ivan
    Advances in Intelligent Systems and Computing, 2013, 210 : 201 - 209
  • [9] COMPARISON OF PARAMETER ESTIMATION ALGORITHMS FOR DISCRETE SYSTEMS
    JAMES, PN
    SOUTER, P
    DIXON, DC
    CHEMICAL ENGINEERING SCIENCE, 1974, 29 (02) : 539 - 547
  • [10] Optimal location of measurements for parameter estimation of distributed parameter systems
    Alana, Jorge E.
    Theodoropoulos, Constantinos
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (01) : 106 - 120