FE2 computational homogenization for the thermo-mechanical analysis of heterogeneous solids

被引:172
|
作者
Oezdemir, I. [1 ]
Brekelmans, W. A. M. [1 ]
Geers, M. G. D. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Mech Engn, NL-5600 MB Eindhoven, Netherlands
关键词
Multi-scale analysis; Computational homogenization; FE2; Coarse graining; Thermo-mechanics; Heterogeneous solids;
D O I
10.1016/j.cma.2008.09.008
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper presents a two-scale thermo-mechanical analysis framework for heterogeneous solids based on a computational homogenization technique. The evolution of the mechanical and thermal fields at the macroscopic level is resolved through the incorporation of the microstructural response. Within the proposed multi-scale approach, the temperature dependent non-linear thermo-mechanical response is accounted by solving a boundary value problem at the micro-scale, the results of which are properly averaged and transferred to the macro level in a consistent way. The framework does not require explicitly determined homogenized material properties (e.g. macroscopic thermal expansion coefficients) since no constitutive equations are required for the macroscopic stresses and heat fluxes at the macro level. A nested finite element solution procedure with an operator-split implementation is outlined and the effectiveness of the approach is demonstrated by illustrative key examples. (c) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:602 / 613
页数:12
相关论文
共 50 条
  • [31] Computational Analysis of Thermo-Mechanical Fields in Hot Roll Bonding of Aluminum Validated by Experiments
    Brigit Mittelman
    Gilad M. Guttmann
    Elad Priel
    JOM, 2019, 71 : 718 - 728
  • [32] Computational Analysis of Thermo-Mechanical Fields in Hot Roll Bonding of Aluminum Validated by Experiments
    Mittelman, Brigit
    Guttmann, Gilad M.
    Priel, Elad
    JOM, 2019, 71 (02) : 718 - 728
  • [33] Computational design of thermo-mechanical metadevices using topology optimization
    Hostos, Juan C. Alvarez
    Fachinotti, Victor D.
    Peralta, Ignacio
    APPLIED MATHEMATICAL MODELLING, 2021, 90 : 758 - 776
  • [34] Computational modelling of thermo-mechanical and transport properties of carbon nanotubes
    Rafii-Tabar, H
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2004, 390 (4-5): : 235 - 452
  • [35] Implementation of the numerical manifold method for thermo-mechanical fracture of planar solids
    Zhang, H. H.
    Ma, G. W.
    Ren, F.
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2014, 44 : 45 - 54
  • [36] Use of homogenization theory to build a beam element with thermo-mechanical microscale properties
    Schrefler, BA
    Lefik, M
    STRUCTURAL ENGINEERING AND MECHANICS, 1996, 4 (06) : 613 - 630
  • [37] Computational and Experimental Investigations of the Fe2(μ-S2)/Fe2(μ-S)2 Equilibrium
    Arrigoni, Federica
    Zampella, Giuseppe
    Zhang, Fanjun
    Kagalwala, Husain N.
    Li, Qian-Li
    Woods, Toby J.
    Rauchfuss, Thomas B.
    INORGANIC CHEMISTRY, 2021, 60 (06) : 3917 - 3926
  • [38] An energy based analysis of thermo-mechanical fatigue
    Radhakrishnan, VM
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 1996, 49 (04) : 357 - 369
  • [39] Thermo-Mechanical Analysis Using a Multiphysics Approach
    Delprete, C.
    Freschi, F.
    Repetto, M.
    Rosso, C.
    7TH INTERNATIONAL CONFERENCE ON MODERN PRACTICE IN STRESS AND VIBRATION ANALYSIS, 2009, 181
  • [40] Analysis of Thermo-Mechanical Behaviour of Energy Piles
    Russo, G.
    Maiorano, R. M. S.
    Marone, G.
    GEOTECHNICAL ENGINEERING, 2019, 50 (03): : 110 - 117