Computer algebra, Painleve analysis and the time-dependent-coefficient nonlinear Schrodinger equation

被引:27
作者
Tian, B [1 ]
Gao, YT [1 ]
机构
[1] LANZHOU UNIV,DEPT COMP SCI,LANZHOU 730000,PEOPLES R CHINA
关键词
variable-coefficient nonlinear Schrodinger equation; computer algebra; Painleve analysis; mathematical methods in physics; Backlund transformation; exact solutions;
D O I
10.1016/0898-1221(96)00068-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The variable-coefficient nonlinear Schrodinger equations describe certain physical systems with nonuniform backgrounds. In this paper, the application of the Painleve analysis and computer algebra leads to an auto-Backlund transformation and some special solutions to a general time-dependent coefficient version of the nonlinear Schrodinger equation.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 5 条
[1]   SLOWLY VARYING SOLITARY WAVES .2. NON-LINEAR SCHRODINGER EQUATION [J].
GRIMSHAW, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1979, 368 (1734) :377-388
[4]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS [J].
WEISS, J ;
TABOR, M ;
CARNEVALE, G .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (03) :522-526
[5]   THE PAINLEVE PROPERTY FOR PARTIAL-DIFFERENTIAL EQUATIONS .2. BACKLUND TRANSFORMATION, LAX PAIRS, AND THE SCHWARZIAN DERIVATIVE [J].
WEISS, J .
JOURNAL OF MATHEMATICAL PHYSICS, 1983, 24 (06) :1405-1413